Skip to main content

Commonly Used 3D Printing Technologies in Oral Health Science

  • Chapter
  • First Online:
3D Printing in Oral Health Science

Abstract

3D printing is regarded as an emerging and revolutionizing technology which has undergone phenomenal expansion in recent years impacting various aspects of daily life activities. Technological advancements in dentistry have increased diagnostic precision, eased treatment delivery, and shortened the chairside time, increased patient comfort and enabling the dentists to offer more efficient treatment. Various 3D printing technologies such as stereolithography (SLA), digital light processing (DLP), fused deposition modeling (FDM), inkjet 3D printing/PolyJet photopolymerization (PPP), selective laser melting (SLM), selective laser sintering (SLS), electron-beam melting (EBM), and laminated object manufacturing (LOM) have been used. Each of these technologies is having specific applications and specific printing material. In the field of dentistry, 3D printing has been proven helpful in creating more naturalistic models of complex anatomical structures for the purpose of education, teaching, training, and research purposes. The ability to visualize treatment outcomes is making it a promising futuristic tool. This book chapter has been written with an understanding that readers have some basic knowledge of 3D printing technologies and their applications in different disciplines of oral health science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 07 December 2022

    This book was inadvertently published with an incorrect author name. This has now been amended throughout the book from Mohammad Mohammed Alam to Mohammad Khursheed Alam.

References

  1. Hajeer MY, Millett DT, Ayoub AF, Siebert JP. Applications of 3D imaging in orthodontics: Part I. J Orthod. 2004;31:62–70.

    Article  Google Scholar 

  2. Taneva E, Kusnoto B, Evans CA. 3D scanning, imaging, and printing in orthodontics. In: Bourzgui F, editor. Issues in contemporary orthodontics. London: InTech Open; 2015.

    Google Scholar 

  3. Oberoi G, Nitsch S, Edelmayer M, Janjić K, Müller AS, Agis H. 3D printing—encompassing the facets of dentistry. Front Bioeng Biotechnol. 2018;6. https://doi.org/10.3389/fbioe.2018.00172.

  4. Groth CH, Kravitz ND, Jones PE, Graham JW, Redmond WR. Three-dimensional printing technology. J Clin Orthod. 2014;48:475–85.

    Google Scholar 

  5. Hull CW. Apparatus for production of three-dimensional objects by stereolithography, U.S. Patent No. 4,575,330; 1986. https://patents.google.com/patent/US4575330A/en. Accessed 4 Oct 2020.

  6. Mouzakis DE. Advanced technologies in manufacturing 3D-layered structures for defense and aerospace. In: Lamination - theory and application. 1st ed. London: InTech Open; 2018. p. 89–113.

    Google Scholar 

  7. Campbell I, Diegel O, Kowen J, Wohlers T. 3D printing and additive manufacturing state of the industry: Annual Worldwide Progress Report. 2017.

    Google Scholar 

  8. Mangano F, Gandolfi A, Luongo G, Logozzo S. Intraoral scanners in dentistry: a review of the current literature. BMC Oral Health. 2017;17. https://doi.org/10.1186/s12903-017-0442-x.

  9. Adams LP, Spirakis A. Stereo photogrammetry. In: Optical measurement methods in biomechanics. Boston, MA: Springer; 1997. p. 17–38.

    Google Scholar 

  10. Favero CS, English JD, Cozad BE, Wirthlin JO, Short MM, Kasper FK. Effect of print layer height and printer type on the accuracy of 3-dimensional printed orthodontic models. Am J Orthod Dentofac Orthop. 2017;152:557–65.

    Article  Google Scholar 

  11. Digital Model and 3D Printing Requirements, Original Release 4.23.2013, Last Updated 30 Jun 2016. www.AmericanBoardOrtho.com. Accessed 4 Oct 2020.

  12. Patzelt SB, Vonau S, Stampf S, Att W. Assessing the feasibility and accuracy of digitizing edentulous jaws. J Am Dent Assoc. 2013;144:914–20.

    Article  Google Scholar 

  13. Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. Photo-curing 3D printing technique and its challenges. Bioact Mater. 2020;5:110–5.

    Article  Google Scholar 

  14. Manfredi D, Calignano F, Krishnan M, et al. Additive manufacturing of Al Alloys and aluminium matrix composites (AMCs). In: Monteiro WA, editor. Light metal alloys applications. London: InTech Open; 2014. p. 3–34.

    Google Scholar 

  15. Skals I, Gleba M, Taube M, Mannering U. Wool textiles and archaeometry: testing reliability of archaeological wool fibre diameter measurements. Danish J Archaeol. 2018;7(2):161–79.

    Article  Google Scholar 

  16. Ruiz MD, Frías MÁ, Rider RM. Fundamentals of stereolithography, a useful tool for diagnosis in dentistry. ODOVTOS-Int J Dent Sci. 2015;17:15–21.

    Article  Google Scholar 

  17. Kim SY, Shin YS, Jung HD, Hwang CJ, Baik HS, Cha JY. Precision and trueness of dental models manufactured with different 3-dimensional printing techniques. Am J Orthod Dentofac Orthop. 2018;153:144–53.

    Article  Google Scholar 

  18. Brown GB, Currier GF, Kadioglu O, Kierl JP. Accuracy of 3-dimensional printed dental models reconstructed from digital intraoral impressions. Am J Orthod Dentofac Orthop. 2018;154:733–9.

    Article  Google Scholar 

  19. https://formlabs.com/blog/ultimate-guide-to-stereolithography-sla-3d-printing/. Accessed 4 Dec 2020.

  20. Hassan WN, Yusoff Y, Mardi NA. Comparison of reconstructed rapid prototyping models produced by 3-dimensional printing and conventional stone models with different degrees of crowding. Am J Orthod Dentofac Orthop. 2017;151:209–18.

    Article  Google Scholar 

  21. Hazeveld A, Slater JJ, Ren Y. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. Am J Orthod Dentofac Orthop. 2014;145:108–15.

    Article  Google Scholar 

  22. Schirmer UR, Wiltshire WA. Manual and computer-aided space analysis: a comparative study. Am J Orthod Dentofac Orthop. 1997;112:676–80.

    Article  Google Scholar 

  23. Hirogaki Y, Sohmura T, Satoh H, Takahashi J, Takada K. Complete 3-D reconstruction of dental cast shape using perceptual grouping. IEEE Trans Med Imaging. 2001;20:1093–101.

    Article  Google Scholar 

  24. Halazonetis DJ. Acquisition of 3-dimensional shapes from images. Am J Orthod Dentofac Orthop. 2001;119:556–60.

    Article  Google Scholar 

  25. Bell A, Ayoub AF, Siebert P. Assessment of the accuracy of a three dimensional imaging system for archiving dental study models. J Orthod. 2003;30:219–23.

    Article  Google Scholar 

  26. Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials. 2002;23:1169–85.

    Article  Google Scholar 

  27. Rimell JT, Marquis PM. Selective laser sintering of ultra-high molecular weight polyethylene for clinical applications. J Biomed Mater Res. 2000;53:414–20.

    Article  Google Scholar 

  28. https://www.3dhubs.com/knowledge-base/introduction-metal-3d-printing/. Accessed 4 Oct 2020.

  29. Shilo D, Emodi O, Blanc O, Noy D, Rachmiel A. Printing the future—updates in 3D printing for surgical applications. Rambam Maimonides Med J. 2018;9:e0020.

    Article  Google Scholar 

  30. Mullen L, Stamp RC, Brooks WK, Jones E, Sutcliffe CJ. Selective laser melting: a regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. J Biomed Mater Res B Appl Biomater. 2009;89(2):325–34.

    Article  Google Scholar 

  31. Stamp R, Fox P, O’Neill W, Jones E, Sutcliffe C. The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting. J Mater Sci Mater Med. 2009;20(9):1839–48.

    Article  Google Scholar 

  32. Hollander DA, Von Walter M, Wirtz T, et al. Structural mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. Biomaterials. 2006;27(7):955–63.

    Article  Google Scholar 

  33. Mangano C, Raspanti M, Traini T, Piattelli A, Sammons R. Stereo imaging and cytocompatibility of a model dental implant surface formed by direct laser fabrication. J Biomed Mater Res A. 2009;88(3):823–31.

    Article  Google Scholar 

  34. Dabrowski B, Swieszkowski W, Godlinski D, Kurzydlowski KJ. Highly porous titanium scaffolds for orthopaedic applications. J Biomed Mater Res B Appl Biomater. 2010;95(1):53–61.

    Article  Google Scholar 

  35. Van Noort R. The future of dental devices is digital. Dent Mater. 2012;28:3–12.

    Article  Google Scholar 

  36. 3D printing process – what is laminated object manufacturing (LOM). https://thre3d.com/how-it-works/sheet-lamination/laminated-object-manufacturing-lom/. Accessed 4 Dec 2020.

  37. Zaharia C, Gabor AG, Gavrilovici A, Stan AT, Idorasi L, Sinescu C, Negruțiu ML. Digital dentistry—3D printing applications. J Interdiscip Med. 2017;2:50–3.

    Article  Google Scholar 

  38. Anderl H, Zur Nedden D, Mu W, Twerdy K, Zanon E, Wicke K, Knapp R. CT-guided stereolithography as a new tool in craniofacial surgery. Br J Plast Surg. 1994;47:60–4.

    Article  Google Scholar 

  39. Li B, Shen S, Jiang W, Li J, Jiang T, Xia JJ, Shen SG, Wang X. A new approach of splint-less orthognathic surgery using a personalized orthognathic surgical guide system: a preliminary study. Int J Oral Maxillofac Surg. 2017;46:1298–305.

    Article  Google Scholar 

  40. Papaspyridakos P, Lal K. Complete arch implant rehabilitation using subtractive rapid prototyping and porcelain fused to zirconia prosthesis: a clinical report. J Prosthet Dent. 2008;100:165–72.

    Article  Google Scholar 

  41. Normando D. 3D orthodontics from verne to shaw. Dent Press J Orthod. 2014;19:12–3.

    Article  Google Scholar 

  42. Chan E, Panayi N, Polychronis G, Papageorgiou SN, Zinelis S, Eliades G, Eliades T. In-house 3D-printed aligners: effect of in vivo ageing on mechanical properties. Eur J Orthod. 2021;5:cjab022. https://doi.org/10.1093/ejo/cjab022. Epub ahead of print

    Article  Google Scholar 

  43. Kohli TMA. 3D printing in dentistry – an overview. Acta Sci Dent Sci. 2019;6:35–41.

    Google Scholar 

  44. Nguyen T, Jackson T. 3D technologies for precision in orthodontics. Semin Orthod. 2018;24:386–92.

    Article  Google Scholar 

  45. Salmi M, Paloheimo KS, Tuomi J, Ingman T, Makitie A. A digital process for additive manufacturing of occlusal splints: a clinical pilot study. J R Soc Interface. 2013;10:20130203. https://doi.org/10.1098/rsif.2013.0203.

    Article  Google Scholar 

  46. Salmi M, Tuomi R, Sirkkanen R, Ingman T, Mäkitie A. Rapid tooling method for soft customized removable oral appliances. Open Dent J. 2012;6:85–9.

    Article  Google Scholar 

  47. Graf S. Direct printed metal devices-the next level of computer-aided design and computer-aided manufacturing applications in the orthodontic care. APOS Trends Orthod. 2017;7:253–9.

    Article  Google Scholar 

  48. Farronato G, Santamaria G, Cressoni P, Falzone D, Colombo M. The digital-titanium Herbst. J Clin Orthod. 2011;45:263–7.

    Google Scholar 

  49. Al Mortadi N, Eggbeer D, Lewis J, Williams RJ. CAD/CAM/AM applications in the manufacture of dental appliances. Am J Orthod Dentofac Orthop. 2012;142:727–33.

    Article  Google Scholar 

  50. Hu F, Pei Z, Wen Y. Using intraoral scanning technology for three-dimensional printing of Kennedy class I removable partial denture metal framework: a clinical report. J Prosthodont. 2019;28:e474–6.

    Article  Google Scholar 

  51. Kim JE, Kim NH, Shim JS. Fabrication of a complete, removable dental prosthesis from a digital intraoral impression for a patient with an excessively tight reconstructed lip after oral cancer treatment: a clinical report. J Prosthet Dent. 2017;117:205–8.

    Article  Google Scholar 

  52. Gan N, Ruan Y, Sun J, Xiong Y, Jiao T. Comparison of adaptation between the major connectors fabricated from intraoral digital impressions and extraoral digital impressions. Sci Rep. 2018;8:529. https://doi.org/10.1038/s41598-017-17839-4.

    Article  Google Scholar 

  53. Osman RB, van der Veen AJ, Huiberts D, Wismeijer D, Alharbi N. 3D-printing zirconia implants; a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs. J Mech Behav Biomed Mater. 2017;75:521–8.

    Article  Google Scholar 

  54. Chen J, Zhang Z, Chen X, Zhang C, Zhang G, Xu Z. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology. J Prosthet Dent. 2014;112:1088–95.

    Article  Google Scholar 

  55. Revilla León M, Klemm IM, García-Arranz J, Özcan M. 3D metal printing - additive manufacturing technologies for frameworks of implant borne fixed dental prosthesis. Eur J Prosthodont Restor Dent. 2017;25:143–7.

    Google Scholar 

  56. Unkovskiy A, Spintzyk S, Brom J, Huettig F, Keutel C. Direct 3D printing of silicone facial prostheses: a preliminary experience in digital workflow. J Prosthet Dent. 2018;120:303–8.

    Article  Google Scholar 

  57. Anadioti E, Kane B, Soulas E. Current and emerging applications of 3D printing in restorative dentistry. Curr Oral Health Rep. 2018;5:133–9.

    Article  Google Scholar 

  58. Mai HN, Lee KB, Lee DH. Fit of interim crowns fabricated using photopolymer-jetting 3D printing. J Prosthet Dent. 2017;118:208–15.

    Article  Google Scholar 

  59. Krastl G, Zehnder MS, Connert T, Weiger R, Kühl S. Guided endodontics: a novel treatment approach for teeth with pulp canal calcification and apical pathology. Dent Traumatol. 2016;32(3):240–6.

    Article  Google Scholar 

  60. Garcia-Sanchez A, Mainkar A, Ordonez E, Sanchez S, Weinstein G. 3D-printed guide for endodontic surgery. Clin Dent Rev. 2019;3(1):13.

    Article  Google Scholar 

  61. Hoang D, Perrault D, Stevanovic M, Ghiassi A. Surgical applications of three-dimensional printing: a review of the current literature and how to get started. Ann Transl Med. 2016;4:456. https://doi.org/10.21037/atm.2016.12.18.

    Article  Google Scholar 

  62. Hung KC, Tseng CS, Dai LG, Hsu S. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering. Biomaterials. 2016;83:156–68.

    Article  Google Scholar 

  63. Pilipchuk SP, Monje A, Jiao Y, Hao J, Kruger L, Flanagan CL, et al. Integration of 3D printed and micropatterned polycaprolactone scaffolds for guidance of oriented collagenous tissue formation in vivo. Adv Healthc Mater. 2016;5:676–87.

    Article  Google Scholar 

  64. Carter SSD, Costa PF, Vaquette C, Ivanovski S, Hutmacher DW, Malda J. Additive biomanufacturing: an advanced approach for periodontal tissue regeneration. Ann Biomed Eng. 2017;45:12–22.

    Article  Google Scholar 

  65. Bottino MC, Pankajakshan D, Nör JE. Advanced scaffolds for dental pulp and periodontal regeneration. Dent Clin N Am. 2017;61:689–711.

    Article  Google Scholar 

  66. Li Z, Liu YS, Ye HQ, Liu YS, Hu WJ, Zhou YS. Diagnosis and treatment of complicated anterior teeth esthetic defects by combination of whole-process digital esthetic rehabilitation with periodontic surgery. Beijing Da Xue Xue Bao. 2017;4:71–5.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Indian Council of Medical Research (ICMR), New Delhi, for providing extramural research grant for research project (code I-1069), which helped to generate data for this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhat Kumar Chaudhari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sokhi, R.K. et al. (2022). Commonly Used 3D Printing Technologies in Oral Health Science. In: Chaudhari, P.K., Bhatia, D., Sharan, J. (eds) 3D Printing in Oral Health Science. Springer, Cham. https://doi.org/10.1007/978-3-031-07369-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07369-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07368-7

  • Online ISBN: 978-3-031-07369-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics