Skip to main content

3D-Printed Metal Implants for Maxillofacial Restorations

  • Chapter
  • First Online:
3D Printing in Oral Health Science

Abstract

Maxillofacial and orbital restorations enable reconstructing the original facial structure and function disrupted by traumatic injuries and pathologies. These restorations require patient-customized orthopedic implants based on the anatomy, functionality, and aesthetics of the maxillofacial region. Recent advances in medical imaging, computer-aided design, finite element analysis, biocompatible materials and 3D printing (additive manufacturing) technologies have made it possible to customize the implants as per the requirement on short duration and at affordable cost. This chapter describes the relevant background, challenges, technologies, and processes. Further, this chapter is supported by two case studies—one involving maxillofacial and another involving orbital restoration. It also provides information pertinent to the regulatory requirements, testing standards, and quality assurance and concludes with the future trends in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ASPS Public Relations. American Society of Plastic Surgeons. Plastic Surgery Statistics Report. 2020 [cited 2020 Jun 27]. p. 1–25. Available from: https://www.plasticsurgery.org/documents/News/Statistics/2019/plastic-surgery-statistics-full-report-2019.pdf.

  2. Carlisle ER, Fischgrund JS. Bone graft and fusion enhancement. In: Surgical management of spinal deformities. Amsterdam: Elsevier Inc.; 2009. p. 433–48.

    Chapter  Google Scholar 

  3. Khojasteh A, Esmaeelinejad M, Aghdashi F. Regenerative techniques in oral and maxillofacial bone grafting. In: Motamedi MHK, editor. A textbook of advanced oral and maxillofacial surgery, vol. 2. London: IntechOpen; 2015.

    Google Scholar 

  4. Mahsut DY. Bone graft types. In: Bone grafting - recent advances with special references to cranio-maxillofacial surgery. London: IntechOpen; 2018. p. 13.

    Google Scholar 

  5. Elsalanty ME, Genecov DG. Bone grafts in craniofacial surgery. Craniomaxillofac Trauma Reconstr. 2009;2(3–4):125–34.

    Article  Google Scholar 

  6. Martola M, Lindqvist C, Hänninen H, Al-Sukhun J. Fracture of titanium plates used for mandibular reconstruction following ablative tumor surgery. J Biomed Mater Res Part B Appl Biomater. 2007;80B(2):345–52.

    Article  Google Scholar 

  7. Hernandez Rosa J, Villanueva NL, Sanati-Mehrizy P, Factor SH, Taub PJ. Review of maxillofacial hardware complications and indications for salvage. Craniomaxillofac Trauma Reconstr. 2016;9(2):134–40.

    Article  Google Scholar 

  8. Ahangar P, Cooke ME, Weber MH, Rosenzweig DH. Current biomedical applications of 3D printing and additive manufacturing. Appl Sci. 2019;9(8):1713.

    Article  Google Scholar 

  9. Gupta DA, Verma DA, Islam DJ, Agarwal DS. Maxillofacial defects and their classification: a review. Int J Adv Res. 2016;4(6):109–14.

    Article  Google Scholar 

  10. Gómez Roselló E, Quiles Granado AM, Artajona Garcia M, Juanpere Martí S, Laguillo Sala G, Beltrán Mármol B, et al. Facial fractures: classification and highlights for a useful report. Insights Imaging. 2020;11(1):49.

    Article  Google Scholar 

  11. Sivapathasundharam B, Biswas P, Preethi S. The World Health Organization classification of odontogenic and maxillofacial bone tumors: an appraisal. J Oral Maxillofac Pathol. 2019;23(2):178.

    Article  Google Scholar 

  12. Pelotti P, Marchetti C, Bonetti M, Monti C. Modern imaging of maxillofacial deformities. Radiol Med. 1994;88(6):725.

    Google Scholar 

  13. Perren SM. Basic aspects of internal fixation. In: Manual of internal fixation in small animals. Berlin: Springer; 1998. p. 3–56.

    Chapter  Google Scholar 

  14. Bell RB, Al-Bustani SS. Orbital fractures. In: Current therapy in oral and maxillofacial surgery. 1st ed. Amsterdam: Elsevier; 2012. p. 304–23.

    Chapter  Google Scholar 

  15. Chen CH, Chen CT, Wang PF, Wang YT, Hsu PH, Lin CL. A novel anatomical thin titanium mesh plate with patient-matched bending technique for orbital floor reconstruction. J Cranio Maxillofac Surg. 2018;46(9):1526–32.

    Article  Google Scholar 

  16. Schlittler F, Vig N, Burkhard JP, Lieger O, Michel C, Holmes S. What are the limitations of the non-patient-specific implant in titanium reconstruction of the orbit? Br J Oral Maxillofac Surg. 2020;58(9):e80–5.

    Article  Google Scholar 

  17. Alasseri N, Alasraj A. Patient-specific implants for maxillofacial defects: challenges and solutions. Maxillofac Plast Reconstr Surg. 2020;42(1):15.

    Article  Google Scholar 

  18. Boyette JR, Pemberton JD, Bonilla-Velez J. Management of orbital fractures: challenges and solutions, Clinical ophthalmology, vol. 9. London: Dove Medical Press Ltd; 2015. p. 2127–37.

    Google Scholar 

  19. Kozakiewicz M, Elgalal M, Walkowiak B, Stefanczyk L. Technical concept of patient-specific, ultrahigh molecular weight polyethylene orbital wall implant. J Cranio Maxillofac Surg. 2013;41(4):282–90.

    Article  Google Scholar 

  20. Kalender WA, Hebel R, Ebersberger J. Reduction of CT artifacts caused by metallic implants. Radiology. 1987;164(2):576–7.

    Article  Google Scholar 

  21. Raman SP, Mahesh M, Blasko RV, Fishman EK. CT scan parameters and radiation dose: practical advice for radiologists. J Am Coll Radiol. 2013;10:840–6.

    Article  Google Scholar 

  22. Trattner S, Pearson GDN, Chin C, Cody DD, Gupta R, Hess CP, et al. Standardization and optimization of computed tomography protocols to achieve low-dose. J Am Coll Radiol. 2014;11(3):271–8.

    Article  Google Scholar 

  23. Sun S, Zhang R. Region of interest extraction of medical image based on improved region growing algorithm. In: Proceedings of the 2017 International Conference on Material Science, Energy and Environmental Engineering (MSEEE 2017). Paris, France: Atlantis Press; 2017. p. 360–4.

    Google Scholar 

  24. Kamdi S, Krishna RK. Image segmentation and region growing algorithm. Int J Comput Technol Electron Eng. 2012;2(1):103–7.

    Google Scholar 

  25. Pilliar RM, Cameron HU, Binnington AG, Szivek J, Macnab I. Bone ingrowth and stress shielding with a porous surface coated fracture fixation plate. J Biomed Mater Res. 1979;13(5):799–810.

    Article  Google Scholar 

  26. Turkyilmaz I, Hoders AB. Immediate loading in implant dentistry. In: Current concepts in dental implantology. London: InTech; 2015.

    Chapter  Google Scholar 

  27. Deshpande VS, Ashby MF, Fleck NA. Foam topology: bending versus stretching dominated architectures. Acta Mater. 2001;49(6):1035–40.

    Article  Google Scholar 

  28. Patil N, Goodman SB. Wear particles and osteolysis. In: Orthopaedic bone cements. Amsterdam: Elsevier Ltd; 2008. p. 140–63.

    Chapter  Google Scholar 

  29. Rodriguez E, Ramirez-Martinez A. Fatigue and wear analysis for temporomandibular joint prosthesis by finite element method, Lecture notes in computational vision and biomechanics. New York: Springer; 2020. p. 317–34.

    Google Scholar 

  30. Van Loon JP, Verkerke GJ, De Vries MP, De Bont LGM. Design and wear testing of a temporomandibular joint prosthesis articulation. J Dent Res. 2000;79(2):715–21.

    Article  Google Scholar 

  31. Helland MM. Anatomy and function of the temporomandibular joint. J Orthop Sports Phys Ther. 1980;1(3):145–52.

    Article  Google Scholar 

  32. Blecha LD, Rakotomanana L, Razafimahery F, Terrier A, Pioletti DP. Targeted mechanical properties for optimal fluid motion inside artificial bone substitutes. J Orthop Res. 2009;27(8):1082–7.

    Article  Google Scholar 

  33. Condie R, Bose S, Bandyopadhyay A. Bone cell-materials interaction on Si microchannels with bioinert coatings. Acta Biomater. 2007;3(4):523–30.

    Article  Google Scholar 

  34. Yoo DJ. Advanced porous scaffold design using multi-void triply periodic minimal surface models with high surface area to volume ratios. Int J Precis Eng Manuf. 2014;15(8):1657–66.

    Article  Google Scholar 

  35. Babaie E, Bhaduri SB. Fabrication aspects of porous biomaterials in orthopedic applications: a review. ACS Biomater Sci Eng. 2018;4(1):1–39.

    Article  Google Scholar 

  36. Taniguchi N, Fujibayashi S, Takemoto M, Sasaki K, Otsuki B, Nakamura T, et al. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng C. 2016;59:690–701.

    Article  Google Scholar 

  37. Hench LL, Wilson J. An introduction to bioceramics. In: Hench LL, editor. An introduction to bioceramics. 2nd ed. Florida: World Scientific; 1993.

    Chapter  Google Scholar 

  38. Oonishi H, Yamamoto M, Ishimaru H, Tsuji E, Kushitani S, Aono M, et al. The effect of hydroxyapatite coating on bone growth into porous titanium alloy implants. J Bone Joint Surg (Br). 1989;71(2):213–6.

    Article  Google Scholar 

  39. Jemat A, Ghazali MJ, Razali M, Otsuka Y. Surface modifications and their effects on titanium dental implants, vol. 2015. New York: BioMed Research International, Hindawi Publishing Corporation; 2015.

    Google Scholar 

  40. Drnovšek N, Rade K, Milačič R, Štrancar J, Novak S. The properties of bioactive TiO2 coatings on Ti-based implants. Surf Coat Technol. 2012;209:177–83.

    Article  Google Scholar 

  41. Hayashi K, Inadome T, Tsumura H, Nakashima Y, Sugioka Y. Effect of surface roughness of hydroxyapatite-coated titanium on the bone-implant interface shear strength. Biomaterials. 1994;15(14):1187–91.

    Article  Google Scholar 

  42. Razavi M, Fathi M, Savabi O, Mohammad Razavi S, Hashemi Beni B, Vashaee D, et al. Controlling the degradation rate of bioactive magnesium implants by electrophoretic deposition of akermanite coating. Ceram Int. 2014;40(3):3865–72.

    Article  Google Scholar 

  43. Abbasi N, Hamlet S, Love RM, Nguyen NT. Porous scaffolds for bone regeneration. J Sci Adv Mater Devices. 2020;5:1–9.

    Article  Google Scholar 

  44. Hussein A, Hao L, Yan C, Everson R, Young P. Advanced lattice support structures for metal additive manufacturing. J Mater Process Technol. 2013;213(7):1019–26.

    Article  Google Scholar 

  45. Sing SL. Concepts of selective laser melting for orthopaedic implants. In: Selective laser melting of novel titanium-tantalum alloy as orthopaedic biomaterial. Singapore: Springer; 2019. p. 9–36.

    Chapter  Google Scholar 

  46. Morrison RJ, Kashlan KN, Flanangan CL, Wright JK, Green GE, Hollister SJ, et al. Regulatory considerations in the design and manufacturing of implantable 3D-printed medical devices. Clin Transl Sci. 2015;8(5):594–600.

    Article  Google Scholar 

  47. Aitchison G, Hukins DW, Parry J, Shepherd DE, Trotman S. A review of the design process for implantable orthopedic medical devices. Open Biomed Eng J. 2009;3(1):21–7.

    Article  Google Scholar 

  48. Moiduddin K. Implementation of computer-assisted design, analysis, and additive manufactured customized mandibular implants. J Med Biol Eng. 2018;38(5):744–56.

    Article  Google Scholar 

  49. Mandolini M, Caragiuli M, Brunzini A, Mazzoli A, Pagnoni M. A procedure for designing custom-made implants for forehead augmentation in people suffering from Apert syndrome. J Med Syst. 2020;44(9):146.

    Article  Google Scholar 

  50. Nag S, Banerjee R. Fundamentals of medical implant materials. In: Narayan R, editor. Materials for medical devices. Novelty, OH: ASM International; 2012. p. 6–17.

    Chapter  Google Scholar 

  51. Saini M, Singh Y, Arora P, Arora V, Jain K, Singh SM, et al. Implant biomaterials: a comprehensive review. A Compr Rev World J Clin Cases. 2015;3(1):52–7.

    Article  Google Scholar 

  52. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001;10:96–101.

    Article  Google Scholar 

  53. Gomes CC, Moreira LM, Santos VJSV, Ramos AS, Lyon JP, Soares CP, et al. Assessment of the genetic risks of a metallic alloy used in medical implants. Genet Mol Biol. 2011;34(1):116–21.

    Article  Google Scholar 

  54. Sing SL, An J, Yeong WY, Wiria FE. Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J Orthop Res. 2016;34(3):369–85.

    Article  Google Scholar 

  55. Olakanmi EO, Cochrane RF, Dalgarno KW. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties, Progress in materials science, vol. 74. Amsterdam: Elsevier Ltd; 2015. p. 401–77.

    Google Scholar 

  56. Pauly S, Löber L, Petters R, Stoica M, Scudino S, Kühn U, et al. Processing metallic glasses by selective laser melting. Mater Today. 2013;16(1–2):37–41.

    Article  Google Scholar 

  57. Kruth J, Vandenbroucke B, Vaerenbergh J, Mercelis P. Benchmarking of different SLS/SLM processes as Rapid Manufacturing techniques. In: International Conference Polymers & Moulds Innovations. Gent Belgium; 2005. p. 525.

    Google Scholar 

  58. Kurzynowski T, Madeja M, Dziedzic R, Kobiela K. The effect of EBM process parameters on porosity and microstructure of Ti-5Al-5Mo-5V-1Cr-1Fe alloy. Scanning. 2019;2019:1–12.

    Article  Google Scholar 

  59. Vayssette B, Saintier N, Brugger C, Elmay M, Pessard E. Surface roughness of Ti-6Al-4V parts obtained by SLM and EBM: effect on the high cycle fatigue life. In: Procedia engineering. Amsterdam: Elsevier Ltd; 2018. p. 89–97.

    Google Scholar 

  60. Dalgarno K. The impact and potential for 3D printing and bioprinting in the medical devices industry. London: Newcastle University; 2020.

    Google Scholar 

  61. Xiao Z, Chen C, Zhu H, Hu Z, Nagarajan B, Guo L, et al. Study of residual stress in selective laser melting of Ti6Al4V. Mater Des. 2020;193:108846.

    Article  Google Scholar 

  62. ASTM F136-13. Standard specification for wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) alloy for surgical implant applications (UNS R56401). West Conshohocken, PA: ASTM International; 2013. [cited 2020 Nov 6]

    Google Scholar 

  63. AMSH81200. Heat treatment of titanium and titanium alloys. SAE International. 2001 [cited 2020 Nov 6]. Available from: https://www.sae.org/standards/content/amsh81200/.

  64. Majeed A, Ahmed A, Salam A, Sheikh MZ. Surface quality improvement by parameters analysis, optimization and heat treatment of AlSi10Mg parts manufactured by SLM additive manufacturing. Int J Light Mater Manuf. 2019;2(4):288–95.

    Google Scholar 

  65. Jones LC, Tsao AK, Topoleski LDT. Factors contributing to orthopaedic implant wear. In: Wear of orthopaedic implants and artificial joints. Sawston, UK: Woodhead Publishing Limited; 2013. p. 310–50.

    Chapter  Google Scholar 

  66. Minagar S, Berndt CC, Wang J, Ivanova E, Wen C. A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater. 2012;8:2875–88.

    Article  Google Scholar 

  67. Kanegsberg B, Kanegsberg E. Parameters in ultrasonic cleaning for implants and other critical devices. J ASTM Int. 2006;3(4) https://doi.org/10.1520/JAI13387.

  68. Weaver GJ. Additive manufacturing and inspection difficulties. 2018.

    Google Scholar 

  69. Edger S. Non-destructive testing of additive manufactured parts. 2020.

    Google Scholar 

  70. Friis E. Mechanical testing of orthopaedic implants. 2017. p. 1–260.

    Google Scholar 

  71. Food and Drug Administration. Technical considerations for additive manufactured devices. 2016. 28 p.

    Google Scholar 

  72. Cheng M. Medical device regulation global overview and guiding principles. Geneva: WHO; 2003.

    Google Scholar 

  73. U.S. Food and Drug Administration. Classify your medical device. FDA. 2020 [cited 2021 Jan 25]. Available from: https://www.fda.gov/medical-devices/overview-device-regulation/classify-your-medical-device.

  74. ASTM F2924-14. Standard specification for additive manufacturing Titanium-6 Aluminum-4 Vanadium with powder bed fusion. West Conshohocken, PA: ASTM International; 2014 [cited 2020 Nov 6]. Available from: https://www.astm.org/Standards/F2924.htm

  75. ASTM F1472-14. Standard specification for wrought Titanium-6Aluminum-4Vanadium alloy for surgical implant applications (UNS R56400). West Conshohocken, PA: ASTM International; 2014 [cited 2020 Nov 6]. Available from: https://www.astm.org/Standards/F1472.htm.

  76. ASTM F3001-14. Standard specification for additive manufacturing Titanium-6 Aluminum-4 Vanadium ELI (Extra Low Interstitial) with powder bed fusion. West Conshohocken, PA: ASTM International; 2014 [cited 2020 Nov 6]. Available from: https://www.astm.org/Standards/F3001.htm.

  77. ISO/ASTM52910-18. Additive manufacturing—design—requirements, guidelines and recommendations. West Conshohocken, PA: ASTM International; 2018. Available from: www.astm.org

    Google Scholar 

  78. ISO/ASTM 52904. Additive manufacturing—process characteristics and performance—practice for metal powder bed fusion process to meet critical applications. ASTM International. 2019 [cited 2021 Jan 25]. Available from: https://www.iso.org/standard/74637.html.

  79. ASTM F3184-16. Standard specification for additive manufacturing stainless steel alloy (UNS S31603) with powder bed fusion. West Conshohocken, PA: ASTM International; 2016. Available from: www.astm.org

    Google Scholar 

  80. ASTM F3301-18a. Standard for additive manufacturing – post processing methods – standard specification for thermal post-processing metal parts made via powder bed fusion. West Conshohocken, PA: ASTM International; 2018. Available from: www.astm.org

    Google Scholar 

  81. ISO 14971:2019(en). Medical devices—application of risk management to medical devices. International Organization of Standards. 2019 [cited 2021 Jan 25]. p. 36. Available from: https://www.iso.org/obp/ui/#iso:std:iso:14971:ed-3:v1:en.

  82. French-Mowat E, Burnett J. How are medical devices regulated in the European Union? J R Soc Med. 2012;105:22–8.

    Article  Google Scholar 

  83. ASTM F3122-14. Standard guide for evaluating mechanical properties of metal materials made via additive manufacturing processes. West Conshohocken, PA: ASTM International; 2014. Available from: www.astm.org

    Google Scholar 

  84. ISO/ASTM DTR 52905. Additive manufacturing of metals—non-destructive testing and evaluation—defect detection in parts. 2018 [cited 2021 Jan 25]. Available from: https://www.iso.org/standard/71988.html.

  85. Badiali G, Ferrari V, Cutolo F, Freschi C, Caramella D, Bianchi A, et al. Augmented reality as an aid in maxillofacial surgery: validation of a wearable system allowing maxillary repositioning. J Cranio Maxillofac Surg. 2014;42(8):1970–6.

    Article  Google Scholar 

  86. Ayoub A, Pulijala Y. The application of virtual reality and augmented reality in Oral & Maxillofacial Surgery. BMC Oral Health. 2019;19(1):238.

    Article  Google Scholar 

  87. Parthasarathy J. 3D modeling, custom implants and its future perspectives in craniofacial surgery. Ann Maxillofac Surg. 2014;4(1):9.

    Article  Google Scholar 

  88. Hosseinkhani M, Mehrabani D, Karimfar MH, Bakhtiyari S, Manafi A, Shirazi R. Tissue engineered scaffolds in regenerative medicine. World J Plast Surg. 2014;3(1):3–7.

    Google Scholar 

  89. Salah M, Tayebi L, Moharamzadeh K, Naini FB. Three-dimensional bio-printing and bone tissue engineering: technical innovations and potential applications in maxillofacial reconstructive surgery. Maxillofac Plast Reconstr Surg. 2020;42(1):18.

    Article  Google Scholar 

  90. Ozbolat IT, Peng W, Ozbolat V. Application areas of 3D bioprinting, Drug discovery today, vol. 21. Amsterdam: Elsevier Ltd; 2016. p. 1257–71.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding support from R.G. Science & Technology Commission, Mumbai, and the Department of Science & Technology, New Delhi, to establish the medical device development and medical metal printing facilities at Biomedical Engineering and Technology Innovation Centre (BETIC), IIT Bombay. The authors also wish to thank Mr. Mahesh Dhoka and his team at Incredible AM Pvt Ltd, Pune for manufacturing the orbital implant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Bhallamudi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaur, B. et al. (2022). 3D-Printed Metal Implants for Maxillofacial Restorations. In: Chaudhari, P.K., Bhatia, D., Sharan, J. (eds) 3D Printing in Oral Health Science. Springer, Cham. https://doi.org/10.1007/978-3-031-07369-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07369-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07368-7

  • Online ISBN: 978-3-031-07369-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics