Skip to main content

Bioprinting Applications in Craniofacial Regeneration

  • Chapter
  • First Online:
3D Printing in Oral Health Science
  • 711 Accesses

Abstract

Tissue engineering and regenerative medicine (TERM) research has advanced significantly with the development of three-dimensional (3D) printing technology. Specifically, 3D bioprinting provides additional benefits and improvement to 3D printing by incorporating the ability to include cells into the process, creating a cell-laden ink, termed bioink. By incorporating cells in conjunction with the superior temporospatial precision of 3D printing, scientists and clinicians have the potential to print live tissues with sophisticated structures and microarchitectures. While 3D bioprinting is still in its early phase, with limited preclinical animal and human studies, it has been proposed as a promising tool for TERM research in many areas of medicine and dentistry, including craniofacial, oral, and dental (DOC) tissue regeneration. This chapter aims to provide a comprehensive overview of major concepts in 3D bioprinting including its armamentarium, types of bioprinters, bioprinting process, clinical applications in craniofacial regeneration, limitations, and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nyberg EL, Farris AL, Hung BP, Dias M, Garcia JR, Dorafshar AH, et al. 3D-printing technologies for craniofacial rehabilitation, reconstruction, and regeneration. Ann Biomed Eng. 2017;45(1):45–57.

    Article  Google Scholar 

  2. Obregon F, Vaquette C, Ivanovski S, Hutmacher DW, Bertassoni LE. Three-dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering. J Dent Res. 2015;94(9_Suppl):143S–52S.

    Article  Google Scholar 

  3. Dwivedi R, Mehrotra D. 3D bioprinting and craniofacial regeneration. J Oral Biol Craniofac Res. 2020;10(4):650–9.

    Article  Google Scholar 

  4. Mustoe TA, Corral CJ. Soft tissue reconstructive choices for craniofacial reconstruction. Clin Plast Surg. 1995;22(3):543–54.

    Article  Google Scholar 

  5. Urken ML, Weinberg H, Buchbinder D, Moscoso JF, Lawson W, Catalano PJ, et al. Microvascular free flaps in head and neck reconstruction: report of 200 cases and review of complications. Arch Otolaryngol Head Neck Surg. 1994;120(6):633–40.

    Article  Google Scholar 

  6. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–85.

    Article  Google Scholar 

  7. Shafiee A, Atala A. Printing technologies for medical applications. Trends Mol Med. 2016;22(3):254–65.

    Article  Google Scholar 

  8. Skardal A, Atala A. Biomaterials for integration with 3-D bioprinting. Ann Biomed Eng. 2015;43(3):730–46.

    Article  Google Scholar 

  9. Phillippi JA, Miller E, Weiss L, Huard J, Waggoner A, Campbell P. Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells. 2008;26(1):127–34.

    Article  Google Scholar 

  10. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.

    Article  Google Scholar 

  11. Kačarević ŽP, Rider PM, Alkildani S, Retnasingh S, Smeets R, Jung O, et al. An introduction to 3D bioprinting: possibilities, challenges and future aspects. Materials. 2018;11(11):2199.

    Article  Google Scholar 

  12. Pirraco RP, Marques AP, Reis RL. Cell interactions in bone tissue engineering. J Cell Mol Med. 2010;14(1–2):93–102.

    Article  Google Scholar 

  13. Fishero B, Kohli N, Das A, Christophel J, Cui Q. Current concepts of bone tissue engineering for craniofacial bone defect repair. Craniomaxillofac Trauma Reconstr. 2015;8(1):23–30.

    Article  Google Scholar 

  14. Mao JJ, Giannobile WV, Helms JA, Hollister SJ, Krebsbach PH, Longaker MT, et al. Craniofacial tissue engineering by stem cells. J Dent Res. 2006;85(11):966–79.

    Article  Google Scholar 

  15. Abou Neel EA, Chrzanowski W, Salih VM, Kim H-W, Knowles JC. Tissue engineering in dentistry. J Dent. 2014;42(8):915–28.

    Article  Google Scholar 

  16. Warren SM, Fong KD, Chen CM, Loboa EG, Cowan CM, Lorenz HP, et al. Tools and techniques for craniofacial tissue engineering. Tissue Eng. 2003;9(2):187–200.

    Article  Google Scholar 

  17. Huang GT-J, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res. 2009;88(9):792–806.

    Article  Google Scholar 

  18. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci. 2000;97(25):13625–30.

    Article  Google Scholar 

  19. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, et al. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002;81(8):531–5.

    Article  Google Scholar 

  20. Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res. 2003;18(4):696–704.

    Article  Google Scholar 

  21. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci. 2003;100(10):5807–12.

    Article  Google Scholar 

  22. Seo B-M, Miura M, Gronthos S, Mark Bartold P, Batouli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364(9429):149–55.

    Article  Google Scholar 

  23. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, et al. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod. 2008;34(2):166–71.

    Article  Google Scholar 

  24. Emmerson E, Knox SM. Salivary gland stem cells: a review of development, regeneration and cancer. Genesis. 2018;56(5):e23211.

    Article  Google Scholar 

  25. Adine C, Ng KK, Rungarunlert S, Souza GR, Ferreira JN. Engineering innervated secretory epithelial organoids by magnetic three-dimensional bioprinting for stimulating epithelial growth in salivary glands. Biomaterials. 2018;180:52–66.

    Article  Google Scholar 

  26. Zhang Q, Nguyen PD, Shi S, Burrell JC, Cullen DK, Le AD. 3D bio-printed scaffold-free nerve constructs with human gingiva-derived mesenchymal stem cells promote rat facial nerve regeneration. Sci Rep. 2018;8(1):6634.

    Article  Google Scholar 

  27. Heo DN, Hospodiuk M, Ozbolat IT. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Acta Biomater. 2019;95:348–56.

    Article  Google Scholar 

  28. Zhuang P, Sun AX, An J, Chua CK, Chew SY. 3D neural tissue models: from spheroids to bioprinting. Biomaterials. 2018;154:113–33.

    Article  Google Scholar 

  29. Zanoni M, Cortesi M, Zamagni A, Arienti C, Pignatta S, Tesei A. Modeling neoplastic disease with spheroids and organoids. J Hematol Oncol. 2020;13(1):97.

    Article  Google Scholar 

  30. Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6(5):915–46.

    Article  Google Scholar 

  31. Adhikari J, Roy A, Das A, Ghosh M, Thomas S, Sinha A, et al. Effects of processing parameters of 3D bioprinting on the cellular activity of bioinks. Macromol Biosci. 2021;21(1):2000179.

    Article  Google Scholar 

  32. Tevlin R, McArdle A, Atashroo D, Walmsley GG, Senarath-Yapa K, Zielins ER, et al. Biomaterials for craniofacial bone engineering. J Dent Res. 2014;93(12):1187–95.

    Article  Google Scholar 

  33. Datta P, Ozbolat V, Ayan B, Dhawan A, Ozbolat IT. Bone tissue bioprinting for craniofacial reconstruction. Biotechnol Bioeng. 2017;114(11):2424–31.

    Article  Google Scholar 

  34. O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88–95.

    Article  Google Scholar 

  35. Thrivikraman G, Athirasala A, Twohig C, Boda SK, Bertassoni LE. Biomaterials for craniofacial bone regeneration. Dent Clin N Am. 2017;61(4):835–56.

    Article  Google Scholar 

  36. Maroulakos M, Kamperos G, Tayebi L, Halazonetis D, Ren Y. Applications of 3D printing on craniofacial bone repair: a systematic review. J Dent. 2019;80:1–14.

    Article  Google Scholar 

  37. Christopher B, Patrick L. Biopolymers. In: Standard handbook of biomedical engineering & design. New York: McGraw-Hill Education; 2003.

    Google Scholar 

  38. Qu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv. 2019;9:11.

    Article  Google Scholar 

  39. Visscher DO, Farré-Guasch E, Helder MN, Gibbs S, Forouzanfar T, van Zuijlen PP, et al. Advances in bioprinting technologies for craniofacial reconstruction. Trends Biotechnol. 2016;34(9):700–10.

    Article  Google Scholar 

  40. Juhasz JA, Best SM. Bioactive ceramics: processing, structures and properties. J Mater Sci. 2012;47(2):610–24.

    Article  Google Scholar 

  41. Fahmy MD, Jazayeri HE, Razavi M, Masri R, Tayebi L. Three-dimensional bioprinting materials with potential application in preprosthetic surgery. J Prosthodont. 2016;25(4):310–8.

    Article  Google Scholar 

  42. Wen Y, Xun S, Haoye M, Baichuan S, Peng C, Xuejian L, et al. 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomater Sci. 2017;5(9):1690–8.

    Article  Google Scholar 

  43. Poologasundarampillai G, Nommeots-Nomm A. 3 - Materials for 3D printing in medicine: metals, polymers, ceramics, hydrogels. In: Kalaskar DM, editor. 3D printing in medicine. Sawston, UK: Woodhead Publishing; 2017. p. 43–71.

    Chapter  Google Scholar 

  44. Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30(10):546–54.

    Article  Google Scholar 

  45. Yazdimamaghani M, Razavi M, Vashaee D, Moharamzadeh K, Boccaccini AR, Tayebi L. Porous magnesium-based scaffolds for tissue engineering. Mater Sci Eng C. 2017;71:1253–66.

    Article  Google Scholar 

  46. Osidak EO, Kozhukhov VI, Osidak MS, Domogatsky SP. Collagen as bioink for bioprinting: a comprehensive review. Int J Bioprint. 2020;6(3):270.

    Google Scholar 

  47. Chen G, Lv Y. Decellularized bone matrix scaffold for bone regeneration. In: Turksen K, editor. Decellularized scaffolds and organogenesis: methods and protocols. New York, Springer; 2018. p. 239–54.

    Google Scholar 

  48. Heath DE. A review of decellularized extracellular matrix biomaterials for regenerative engineering applications. Regen Eng Transl Med. 2019;5(2):155–66.

    Article  Google Scholar 

  49. Akter F. Chapter 2 - Principles of tissue engineering. In: Akter F, editor. Tissue engineering made easy. San Diego: Academic Press; 2016. p. 3–16.

    Chapter  Google Scholar 

  50. Deepthi S, Venkatesan J, Kim S-K, Bumgardner JD, Jayakumar R. An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. Int J Biol Macromol. 2016;93:1338–53.

    Article  Google Scholar 

  51. Shams S, Silva EA. Chapter 4 - Bioengineering strategies for gene delivery. In: Fernandes TG, Diogo MM, Cabral JMS, editors. Engineering strategies for regenerative medicine. San Diego: Academic Press; 2020. p. 107–48.

    Chapter  Google Scholar 

  52. Kim B-S, Baez CE, Atala A. Biomaterials for tissue engineering. World J Urol. 2000;18(1):2–9.

    Article  Google Scholar 

  53. Yang S, Leong K-F, Du Z, Chua C-K. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2001;7(6):679–89.

    Article  Google Scholar 

  54. Neumann A, Kevenhoerster K. Biomaterials for craniofacial reconstruction. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2009;8:Doc08.

    Google Scholar 

  55. Tollemar V, Collier ZJ, Mohammed MK, Lee MJ, Ameer GA, Reid RR. Stem cells, growth factors and scaffolds in craniofacial regenerative medicine. Genes Dis. 2016;3(1):56–71.

    Article  Google Scholar 

  56. Mobaraki M, Ghaffari M, Yazdanpanah A, Luo Y, Mills DK. Bioinks and bioprinting: a focused review. Bioprinting. 2020;18:e00080.

    Article  Google Scholar 

  57. Chen F-M, Zhang M, Wu Z-F. Toward delivery of multiple growth factors in tissue engineering. Biomaterials. 2010;31(24):6279–308.

    Article  Google Scholar 

  58. Bittner SM, Guo JL, Mikos AG. Spatiotemporal control of growth factors in three-dimensional printed scaffolds. Bioprinting. 2018;12:e00032.

    Article  Google Scholar 

  59. Kuroda Y, Kawai T, Goto K, Matsuda S. Clinical application of injectable growth factor for bone regeneration: a systematic review. Inflamm Regen. 2019;39(1):20.

    Article  Google Scholar 

  60. Nevins M, Giannobile WV, McGuire MK, Kao RT, Mellonig JT, Hinrichs JE, et al. Platelet-derived growth factor stimulates bone fill and rate of attachment level gain: results of a large multicenter randomized controlled trial. J Periodontol. 2005;76(12):2205–15.

    Article  Google Scholar 

  61. Colciago A, Celotti F, Casati L, Giancola R, Castano SM, Antonini G, et al. In vitro effects of PDGF isoforms (AA, BB, AB and CC) on migration and proliferation of SaOS-2 osteoblasts and on migration of human osteoblasts. Int J Biomed Sci. 2009;5(4):380–9.

    Google Scholar 

  62. Shirazi SFS, Gharehkhani S, Mehrali M, Yarmand H, Metselaar HSC, Adib Kadri N, et al. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci Technol Adv Mater. 2015;16(3):033502.

    Article  Google Scholar 

  63. Rider P, Kačarević ŽP, Alkildani S, Retnasingh S, Barbeck M. Bioprinting of tissue engineering scaffolds. J Tissue Eng. 2018;9:204173141880209.

    Article  Google Scholar 

  64. Jeong H-J, Nam H, Jang J, Lee S-J. 3D bioprinting strategies for the regeneration of functional tubular tissues and organs. Bioengineering. 2020;7(2):32.

    Article  Google Scholar 

  65. Zheng Z, Eglin D, Alini M, Richards GR, Qin L, Lai Y. Visible light-induced 3D bioprinting technologies and corresponding bioink materials for tissue engineering: a review. Engineering. 2020;7:966–78.

    Article  Google Scholar 

  66. Bishop ES, Mostafa S, Pakvasa M, Luu HH, Lee MJ, Wolf JM, et al. 3-D bioprinting technologies in tissue engineering and regenerative medicine: current and future trends. Genes Dis. 2017;4(4):185–95.

    Article  Google Scholar 

  67. Kumar H, Kim K. Stereolithography 3D bioprinting. Methods Mol Biol. 2020;2140:93–108.

    Article  Google Scholar 

  68. Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials. 2010;31(28):7250–6.

    Article  Google Scholar 

  69. Li J, Chen M, Fan X, Zhou H. Recent advances in bioprinting techniques: approaches, applications and future prospects. J Transl Med. 2016;14(1):271.

    Article  Google Scholar 

  70. Lee J-S, Hong JM, Jung JW, Shim J-H, Oh J-H, Cho D-W. 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication. 2014;6(2):024103.

    Article  Google Scholar 

  71. Tappa K, Jammalamadaka U. Novel biomaterials used in medical 3D printing techniques. J Funct Biomater. 2018;9(1):17.

    Article  Google Scholar 

  72. Crook JM, editor. 3D bioprinting: principles and protocols, Methods in molecular biology, vol. 2140. New York: Springer; 2020.

    Google Scholar 

  73. Jiang T, Munguia-Lopez JG, Flores-Torres S, Kort-Mascort J, Kinsella JM. Extrusion bioprinting of soft materials: an emerging technique for biological model fabrication. Appl Phys Rev. 2019;6(1):011310.

    Article  Google Scholar 

  74. Bertassoni LE. Progress and challenges in microengineering the dental pulp vascular microenvironment. J Endod. 2020;46(9S):S90–100.

    Article  Google Scholar 

  75. Ma Y, Xie L, Yang B, Tian W. Three-dimensional printing biotechnology for the regeneration of the tooth and tooth-supporting tissues. Biotechnol Bioeng. 2019;116(2):452–68.

    Article  Google Scholar 

  76. Yang J, Yuan G, Chen Z. Pulp regeneration: current approaches and future challenges. Front Physiol. 2016;7:58.

    Article  Google Scholar 

  77. Tao O, Wu DT, Pham HM, Pandey N, Tran SD. Nanomaterials in craniofacial tissue regeneration: a review. Appl Sci. 2019;9(2):317.

    Article  Google Scholar 

  78. Khayat A, Monteiro N, Smith EE, Pagni S, Zhang W, Khademhosseini A, et al. GelMA-encapsulated hDPSCs and HUVECs for dental pulp regeneration. J Dent Res. 2017;96(2):192–9.

    Article  Google Scholar 

  79. Yu H, Zhang X, Song W, Pan T, Wang H, Ning T, et al. Effects of 3-dimensional bioprinting alginate/gelatin hydrogel scaffold extract on proliferation and differentiation of human dental pulp stem cells. J Endod. 2019;45(6):706–15.

    Article  Google Scholar 

  80. Athirasala A, Tahayeri A, Thrivikraman G, França CM, Monteiro N, Tran V, et al. A dentin-derived hydrogel bioink for 3D bioprinting of cell laden scaffolds for regenerative dentistry. Biofabrication. 2018;10(2):024101.

    Article  Google Scholar 

  81. Park JH, Gillispie GJ, Copus JS, Zhang W, Atala A, Yoo JJ, et al. The effect of BMP-mimetic peptide tethering bioinks on the differentiation of dental pulp stem cells (DPSCs) in 3D bioprinted dental constructs. Biofabrication. 2020;12(3):035029.

    Article  Google Scholar 

  82. Kim JH, Park CH, Perez RA, Lee HY, Jang JH, Lee HH, et al. Advanced biomatrix designs for regenerative therapy of periodontal tissues. J Dent Res. 2014;93(12):1203–11.

    Article  Google Scholar 

  83. Ivanovski S, Vaquette C, Gronthos S, Hutmacher DW, Bartold PM. Multiphasic scaffolds for periodontal tissue engineering. J Dent Res. 2014;93(12):1212–21.

    Article  Google Scholar 

  84. Liu J, Ruan J, Weir MD, Ren K, Schneider A, Wang P, et al. Periodontal bone-ligament-cementum regeneration via scaffolds and stem cells. Cell. 2019;8(6):537.

    Article  Google Scholar 

  85. Park CH, Rios HF, Jin Q, Bland ME, Flanagan CL, Hollister SJ, et al. Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces. Biomaterials. 2010;31(23):5945–52.

    Article  Google Scholar 

  86. Park CH, Rios HF, Jin Q, Sugai JV, Padial-Molina M, Taut AD, et al. Tissue engineering bone-ligament complexes using fiber-guiding scaffolds. Biomaterials. 2012;33(1):137–45.

    Article  Google Scholar 

  87. Vaquette C, Fan W, Xiao Y, Hamlet S, Hutmacher DW, Ivanovski S. A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex. Biomaterials. 2012;33(22):5560–73.

    Article  Google Scholar 

  88. Park CH, Rios HF, Taut AD, Padial-Molina M, Flanagan CL, Pilipchuk SP, et al. Image-based, fiber guiding scaffolds: a platform for regenerating tissue interfaces. Tissue Eng Part C Methods. 2014;20(7):533–42.

    Article  Google Scholar 

  89. Park CH, Kim K-H, Lee Y-M, Giannobile WV, Seol Y-J. 3D printed, microgroove pattern-driven generation of oriented ligamentous architectures. Int J Mol Sci. 2017;18(9):1927.

    Article  Google Scholar 

  90. Lee CH, Hajibandeh J, Suzuki T, Fan A, Shang P, Mao JJ. Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Eng Part A. 2013;20(7–8):1342–51.

    Google Scholar 

  91. Rasperini G, Pilipchuk SP, Flanagan CL, Park CH, Pagni G, Hollister SJ, et al. 3D-printed bioresorbable scaffold for periodontal repair. J Dent Res. 2015;94(9 Suppl):153S–7S.

    Article  Google Scholar 

  92. Ma Y, Ji Y, Huang G, Ling K, Zhang X, Xu F. Bioprinting 3D cell-laden hydrogel microarray for screening human periodontal ligament stem cell response to extracellular matrix. Biofabrication. 2015;7(4):044105.

    Article  Google Scholar 

  93. Thattaruparambil Raveendran N, Vaquette C, Meinert C, Samuel Ipe D, Ivanovski S. Optimization of 3D bioprinting of periodontal ligament cells. Dent Mater. 2019;35(12):1683–94.

    Article  Google Scholar 

  94. Tian Y, Liu M, Liu Y, Shi C, Wang Y, Liu T, et al. The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique. J Biomed Mater Res A. 2020; https://doi.org/10.1002/jbm.a.37114.

  95. Vaquette C, Saifzadeh S, Farag A, Hutmacher DW, Ivanovski S. Periodontal tissue engineering with a multiphasic construct and cell sheets. J Dent Res. 2019;98(6):673–81.

    Article  Google Scholar 

  96. Staples RJ, Ivanovski S, Vaquette C. Fibre guiding scaffolds for periodontal tissue engineering. J Periodontal Res. 2020;55(3):331–41.

    Article  Google Scholar 

  97. Nguyen TT, Wu DT, Ramamoorthi M, Syrbu J, Tran SD. 17 - Scaffolds for maxillary sinus augmentation. In: Mozafari M, Sefat F, Atala A, editors. Handbook of tissue engineering scaffolds, vol. 1. Sawston, UK: Woodhead Publishing; 2019. p. 369–86.

    Chapter  Google Scholar 

  98. Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater. 2019;84:16–33.

    Article  Google Scholar 

  99. Genova T, Roato I, Carossa M, Motta C, Cavagnetto D, Mussano F. Advances on bone substitutes through 3D bioprinting. Int J Mol Sci. 2020;21(19):7012.

    Article  Google Scholar 

  100. Yu N, Nguyen T, Cho YD, Kavanagh NM, Ghassib I, Giannobile WV. Personalized scaffolding technologies for alveolar bone regenerative medicine. Orthod Craniofac Res. 2019;22(Suppl 1):69–75.

    Article  Google Scholar 

  101. Lin Y, Lin H, Ramamoorthi M, Wu DT, Zhang Z, Tran SD. 21 - Scaffolds for temporomandibular joint disc engineering. In: Mozafari M, Sefat F, Atala A, editors. Handbook of tissue engineering scaffolds, vol. 1. Sawston, UK: Woodhead Publishing; 2019. p. 437–55.

    Chapter  Google Scholar 

  102. Tao O, Kort-Mascort J, Lin Y, Pham HM, Charbonneau AM, ElKashty OA, et al. The applications of 3D printing for craniofacial tissue engineering. Micromachines. 2019;10(7):480.

    Article  Google Scholar 

  103. Schuurman W, Levett PA, Pot MW, van Weeren PR, Dhert WJA, Hutmacher DW, et al. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci. 2013;13(5):551–61.

    Article  Google Scholar 

  104. Rhee S, Puetzer JL, Mason BN, Reinhart-King CA, Bonassar LJ. 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater Sci Eng. 2016;2(10):1800–5.

    Article  Google Scholar 

  105. Park SH, Yun BG, Won JY, Yun WS, Shim JH, Lim MH, et al. New application of three-dimensional printing biomaterial in nasal reconstruction. Laryngoscope. 2017;127(5):1036–43.

    Article  Google Scholar 

  106. Messaoudi O, Henrionnet C, Bourge K, Loeuille D, Gillet P, Pinzano A. Stem cells and extrusion 3D printing for hyaline cartilage engineering. Cell. 2020;10(1):2.

    Article  Google Scholar 

  107. Tarafder S, Koch A, Jun Y, Chou C, Awadallah MR, Lee CH. Micro-precise spatiotemporal delivery system embedded in 3D printing for complex tissue regeneration. Biofabrication. 2016;8(2):025003.

    Article  Google Scholar 

  108. Legemate K, Tarafder S, Jun Y, Lee CH. Engineering human TMJ discs with protein-releasing 3D-printed scaffolds. J Dent Res. 2016;95(7):800–7.

    Article  Google Scholar 

  109. Morrison RJ, Nasser HB, Kashlan KN, Zopf DA, Milner DJ, Flanangan CL, et al. Co-culture of adipose-derived stem cells and chondrocytes on three-dimensionally printed bioscaffolds for craniofacial cartilage engineering. Laryngoscope. 2018;128(7):E251–7.

    Article  Google Scholar 

  110. Volk GF, Pantel M, Guntinas-Lichius O. Modern concepts in facial nerve reconstruction. Head Face Med. 2010;6(1):25.

    Article  Google Scholar 

  111. Yu J, Park SA, Kim WD, Ha T, Xin Y-Z, Lee J, et al. Current advances in 3D bioprinting technology and its applications for tissue engineering. Polymers (Basel). 2020;12(12):2958.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon D. Tran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, D.T., Pham, H.M., Tao, O., Wu, K.Y., Tran, S.D. (2022). Bioprinting Applications in Craniofacial Regeneration. In: Chaudhari, P.K., Bhatia, D., Sharan, J. (eds) 3D Printing in Oral Health Science. Springer, Cham. https://doi.org/10.1007/978-3-031-07369-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07369-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07368-7

  • Online ISBN: 978-3-031-07369-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics