EDPB Work Programme 2021/2022, The European Data Protection Board. https://edpb.europa.eu/system/files/2021-03/edpb_workprogramme_2021-2022_en.pdf
Opinion 05/2014 on Anonymisation Techniques. Article 29 Data Protection Working Party, April 2014. https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf
Common Methodology for Information Technology Security Evaluation. Evaluation methodology, Version 3.1, Revision 5, CCMB-2017-04-004, April 2017. https://www.commoncriteriaportal.org/files/ccfiles/CEMV3.1R5.pdf
AEPD-EDPS joint paper on 10 misunderstandings related to anonymisation (2021). https://edps.europa.eu/data-protection/our-work/publications/papers/aepd-edps-joint-paper-10-misunderstandings-related_en
Benitez, K., Malin, B.: Evaluating re-identification risks with respect to the HIPAA privacy rule. J. Am. Med. Inf. Assoc. 17(2), 169–177 (2010). https://doi.org/10.1136/jamia.2009.000026
Buchmann, E., Böhm, K., Burghardt, T., Kessler, S.: Re-identification of smart meter data. Pers. Ubiquitous Comput. 17(4), 653–662 (2013). https://doi.org/10.1007/s00779-012-0513-6
CrossRef
Google Scholar
Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational choice of security measures via multi-parameter attack trees. In: Lopez, J. (ed.) CRITIS 2006. LNCS, vol. 4347, pp. 235–248. Springer, Heidelberg (2006). https://doi.org/10.1007/11962977_19
CrossRef
Google Scholar
De Montjoye, Y.A., Hidalgo, C.A., Verleysen, M., Blondel, V.D.: Unique in the crowd: the privacy bounds of human mobility. Sci. Rep. 3(1), 1–5 (2013). https://doi.org/10.1038/srep01376
CrossRef
Google Scholar
El Emam, K., Jonker, E., Arbuckle, L., Malin, B.: A systematic review of re-identification attacks on health data. PLoS ONE 6(12), e28071 (2011)
CrossRef
Google Scholar
Elamir, E.A.H.: Analysis of re-identification risk based on log-linear models. In: Domingo-Ferrer, J., Torra, V. (eds.) PSD 2004. LNCS, vol. 3050, pp. 273–281. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25955-8_21
CrossRef
Google Scholar
Finck, M., Pallas, F.: They who must not be identified-distinguishing personal from non-personal data under the GDPR. Int. Data Privacy Law 10(1), 11–36 (2020). https://doi.org/10.1093/idpl/ipz026
Kassem, A., Ács, G., Castelluccia, C., Palamidessi, C.: Differential inference testing: a practical approach to evaluate sanitizations of datasets. In: 2019 IEEE Security and Privacy Workshops, SP Workshops 2019, San Francisco, CA, USA, 19–23 May 2019, pp. 72–79. IEEE (2019). https://doi.org/10.1109/SPW.2019.00024
Kikuchi, H., Yamaguchi, T., Hamada, K., Yamaoka, Y., Oguri, H., Sakuma, J.: Ice and fire: quantifying the risk of re-identification and utility in data anonymization. In: Barolli, L., Takizawa, M., Enokido, T., Jara, A.J., Bocchi, Y. (eds.) 30th IEEE International Conference on Advanced Information Networking and Applications, AINA 2016, Crans-Montana, Switzerland, 23–25 March 2016, pp. 1035–1042. IEEE Computer Society (2016). https://doi.org/10.1109/AINA.2016.151
Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: 2008 IEEE Symposium on Security and Privacy (S&P 2008), pp. 111–125. IEEE (2008)
Google Scholar
Purtova, N.: From Knowing by name to personalisation: meaning of identification under the GDPR. Available at SSRN 3849943 (2021)
Google Scholar
Quelle, C.: Enhancing compliance under the general data protection regulation: the risky upshot of the accountability- and risk-based approach. Eur. J. Risk Regul. 9(3), 502–526 (2018). https://doi.org/10.1017/err.2018.47
CrossRef
Google Scholar
Rocchetto, M., Tippenhauer, N.O.: On attacker models and profiles for cyber-physical systems. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 427–449. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45741-3_22
CrossRef
Google Scholar
Skinner, C., Holmes, D.J.: Estimating the re-identification risk per record in microdata. J. Official Stat. 14(4), 361 (1998)
Google Scholar
Truta, T.M., Fotouhi, F., Barth-Jones, D.C.: Disclosure risk measures for microdata. In: Proceedings of the 15th International Conference on Scientific and Statistical Database Management (SSDBM 2003), 9–11 July 2003, Cambridge, MA, USA, pp. 15–22. IEEE Computer Society (2003). https://doi.org/10.1109/SSDM.2003.1214948
Wan, Z., et al.: A game theoretic framework for analyzing re-identification risk. PLoS ONE 10(3), e0120592 (2015). https://doi.org/10.1371/journal.pone.0120592
CrossRef
Google Scholar
Yin, L., et al.: Re-identification risk versus data utility for aggregated mobility research using mobile phone location data. PLoS ONE 10(10), e0140589 (2015)
CrossRef
Google Scholar
Zang, H., Bolot, J.: Anonymization of location data does not work: a large-scale measurement study. In: Ramanathan, P., Nandagopal, T., Levine, B.N. (eds.) Proceedings of the 17th Annual International Conference on Mobile Computing and Networking, MOBICOM 2011, Las Vegas, Nevada, USA, 19–23 September 2011, pp. 145–156. ACM (2011). https://doi.org/10.1145/2030613.2030630