Skip to main content

NVIDIA’s Quantum InfiniBand Network Congestion Control Technology and Its Impact on Application Performance

  • Conference paper
  • First Online:
High Performance Computing (ISC High Performance 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13289))

Included in the following conference series:

Abstract

Applications running on large scale systems often suffer from degraded performance and lack of reproducible run-times due to network-level congestion, whether caused by the application network traffic itself, or by unrelated background network traffic (i.e. other applications). This paper describes the hardware-based congestion control algorithm implemented in NVIDIA’s Quantum HDR 200 Gb/s InfiniBand generation and the AI-based training used to obtain algorithm parameters. The hardware leverages NVIDIA’s Data Center Quantized Congestion Notification (DCQCN) algorithm and protocol and applies it to the InfiniBand network layer. Congestion patterns described in the literature are studied and enhanced to create greater congestion and are used to study the impact of such patterns on three applications: Incompact3D, LAMMPS and VASP. The study shows that network congestion increases individual measured application run time by up to a factor of ten or greater, while introduction of the implemented congestion control on the Quantum HDR InfiniBand technology recovers most of the lost time for the tested applications and congestion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Zimmer, S. Atchley, R. Pankajakshan, et al.: An evaluation of the CORAL interconnects. In: Proceedings of the International Conference for High Performance Computing, pp. 1–18 (2019). https://doi.org/10.1145/3295500.3356166

  2. Geoffray, P., Hoefler, T.: Adaptive routing strategies for modern high performance networks. In: 16th IEEE Symposium on High Performance Interconnects (Hot Interconnects), pp. 165–172 (2008). https://doi.org/10.1109/HOTI.2008.21

  3. Mittal, R., et al.: Revisiting network support for RDMA. In: Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, pp. 313–326 (2018) https://doi.org/10.1145/3230543.3230557

  4. Chunduri, S., Groves, T., Mendygral, P., et al.: GPCNeT: designing a benchmark suite for inducing and measuring contention in HPC networks. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC 2019), pp. 1–33 (2019). https://doi.org/10.1145/3295500.3356215

  5. Clos, C.: A study of nonblocking switching networks. Bell Syst. Technol. J. 32(2), 406–424 (1953). https://doi.org/10.1002/j.1538-7305.1953.tb01433.x

    Article  Google Scholar 

  6. Ngai, J., Seitz, C.: A framework for adaptive routing in multicomputer networks. In: Proceedings of ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 1–9 (1989). https://doi.org/10.1145/72935.72936

  7. Dally, W.: Virtual-channel flow control. In: Proceedings of the 17th Annual International Symposium on Computer Architecture (ISCA), pp. 60–68 (1990). https://doi.org/10.1145/325164.325115

  8. IEEE 802.11Qbb. Priority based flow control (2011)

    Google Scholar 

  9. Alizadeh, M., Greenberg, A., Maltz, D., et al.: Data Center TCP (DCTCP). In: ACM SIGCOMM (2010). https://doi.org/10.1145/1851275.1851192

  10. Ramakrishnan, K., Floyd, S., Black, D.: The addition of explicit congestion notification (ECN). RFC 3168. https://doi.org/10.17487/RFC3168

  11. Zhu, Y., Eran, H., Firestone, D., et al.: Congestion Control for Large-Scale RDMA Deployments. In: ACM SIGCOMM (2015). https://doi.org/10.1145/2829988.2787484

  12. IEEE. 802.11Qau. Congestion notification (2010)

    Google Scholar 

  13. IBTA: InfiniBand Architecture Specification, Volume 1, Release 1.5. Available to IBTA members via. https://www.infinibandta.org

  14. Gusat, M., Craddock, D., Denzel, W., et al.: Congestion control in infiniband networks. In: Hot Interconnects, pp. 158–159 (2005). https://doi.org/10.1109/CONECT.2005.14

  15. Gran, E., Eimot, M., Reinemo, S.-A., et al.: First experiences with congestion control in InfiniBand hardware. In: International Parallel and Distributed Processing Symposium. (2010). https://doi.org/10.1109/IPDPS.2010.5470419

  16. Mittal, R., Lam, V., Dukkipati, N., et al.: TIMELY: RTT-based congestion control for the datacenter. In: ACM SIGCOMM (2015). https://doi.org/10.1145/2785956.2787510

  17. Kumar, G., Dukkipati, N., Jang, K., et al.: Swift: delay is simple and effective for congestion control in the datacenter. In: SIGCOMM 2020: Proceedings ACM Special Interest Group on Data Communication, pp. 514–528 (2020). https://doi.org/10.1145/3387514.3406591

  18. Wang, Y., Lan, M., Zhao, T., et al.: Combining RTT and ECN for RoCEv2 protocol. In: HPCCT and BDAI 2020: Proceedings 2020 4th High Performance Computing and Cluster Technologies Conference and 2020 3rd International Conference on Big Data and Artificial Intelligence, pp. 158–164, Qingdao, China (2020). https://doi.org/10.1145/3409501.3409509

  19. Li, Y., Miao, R., Liu, H., et al.: HPCC: high precision congestion control. In: SIGCOMM 2019: Proc. ACM Special Interest Group on Data Communication, pp. 44–58 (2019). https://doi.org/10.1145/3341302.3342085

  20. Xue, J., Chaudhry, M., Vamanan, B., et al.: Dart: divide and specialize for fast response to congestion in RDMA-based datacenter networks. IEEE/ACM Trans. Networking 28(1), 322–335 (2020). https://doi.org/10.1109/TNET.2019.2961671

    Article  Google Scholar 

  21. Yang, C., Reddy, A.: A taxonomy for congestion control algorithms in packet switching networks. IEEE Network 9(4), 34–45 (1995). https://doi.org/10.1109/65.397042

  22. Saylor, D.: Evo: a hybrid optimizer employing evolutionary algorithms and reinforcement meta learning agents. [Unpublished manuscript]. Applied Machine Learning and Artificial Intelligence, NVIDIA (2013)

    Google Scholar 

  23. Effective Bandwidth Benchmark Homepage. https://fs.hlrs.de/projects/par/mpi/b_eff/b_eff_3.1

  24. Incompact3D Homepage. https://www.incompact3d.com

  25. Bartholomew, P., Deskos, G., et al.: Xcompact3D: an open-source framework for solving turbulence problems on a Cartesian mesh. SoftwareX 12, 100550 (2020). https://doi.org/10.1016/j.softx.2020.100550

  26. LAMMPS Homepage. https://www.lammps.org

  27. Thompson, A., Aktulga, H., et al.: LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comp. Phys. Comm. 271, 10817, 100550 (2022). https://doi.org/10.1016/j.cpc.2021.108171

  28. VASP Homepage. https://www.vasp.at

  29. Kresse, G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993). https://doi.org/10.1016/0022-3093(95)00355-X

  30. Kresse, G., Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994). https://doi.org/10.1103/PhysRevB.49.14251

  31. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mat. Sci. 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0

  32. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuval Shpigelman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shpigelman, Y., Shainer, G., Graham, R., Qin, Y., Cisneros-Stoianowski, G., Stunkel, C. (2022). NVIDIA’s Quantum InfiniBand Network Congestion Control Technology and Its Impact on Application Performance. In: Varbanescu, AL., Bhatele, A., Luszczek, P., Marc, B. (eds) High Performance Computing. ISC High Performance 2022. Lecture Notes in Computer Science, vol 13289. Springer, Cham. https://doi.org/10.1007/978-3-031-07312-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07312-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07311-3

  • Online ISBN: 978-3-031-07312-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics