Skip to main content

Establishing the Molecular and Functional Diversity of Spinal Motoneurons

  • Chapter
  • First Online:
Vertebrate Motoneurons

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 28))

Abstract

Spinal motoneurons are a remarkably diverse class of neurons responsible for facilitating a broad range of motor behaviors and autonomic functions. Studies of motoneuron differentiation have provided fundamental insights into the developmental mechanisms of neuronal diversification, and have illuminated principles of neural fate specification that operate throughout the central nervous system. Because of their relative anatomical simplicity and accessibility, motoneurons have provided a tractable model system to address multiple facets of neural development, including early patterning, neuronal migration, axon guidance, and synaptic specificity. Beyond their roles in providing direct communication between central circuits and muscle, recent studies have revealed that motoneuron subtype-specific programs also play important roles in determining the central connectivity and function of motor circuits. Cross-species comparative analyses have provided novel insights into how evolutionary changes in subtype specification programs may have contributed to adaptive changes in locomotor behaviors. This chapter focusses on the gene regulatory networks governing spinal motoneuron specification, and how studies of spinal motoneurons have informed our understanding of the basic mechanisms of neuronal specification and spinal circuit assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agalliu D, Takada S, Agalliu I, McMahon AP, Jessell TM (2009) Motor neurons with axial muscle projections specified by Wnt4/5 signaling. Neuron 61:708–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alkaslasi MR, Piccus ZE, Hareendran S, Silberberg H, Chen L, Zhang Y, Petros TJ, Le Pichon CE (2021) Single nucleus RNA-sequencing defines unexpected diversity of cholinergic neuron types in the adult mouse spinal cord. Nat Commun 12:2471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ampatzis K, Song J, Ausborn J, El Manira A (2013) Pattern of innervation and recruitment of different classes of motoneurons in adult zebrafish. J Neurosci 33:10875–10886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ampatzis K, Song J, Ausborn J, El Manira A (2014) Separate microcircuit modules of distinct v2a interneurons and motoneurons control the speed of locomotion. Neuron 83:934–943

    Article  CAS  PubMed  Google Scholar 

  • Appel B, Korzh V, Glasgow E, Thor S, Edlund T, Dawid IB, Eisen JS (1995) Motoneuron fate specification revealed by patterned LIM homeobox gene expression in embryonic zebrafish. Development 121:4117–4125

    Article  CAS  PubMed  Google Scholar 

  • Arber S (2012) Motor circuits in action: specification, connectivity, and function. Neuron 74:975–989

    Article  CAS  PubMed  Google Scholar 

  • Arber S, Han B, Mendelsohn M, Smith M, Jessell TM, Sockanathan S (1999) Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23:659–674

    Article  CAS  PubMed  Google Scholar 

  • Arber S, Ladle DR, Lin JH, Frank E, Jessell TM (2000) ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons. Cell 101:485–498

    Article  CAS  PubMed  Google Scholar 

  • Ashrafi S, Lalancette-Hebert M, Friese A, Sigrist M, Arber S, Shneider NA, Kaltschmidt JA (2012) Wnt7A identifies embryonic gamma-motor neurons and reveals early postnatal dependence of gamma-motor neurons on a muscle spindle-derived signal. J Neurosci 32:8725–8731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baek M, Pivetta C, Liu JP, Arber S, Dasen JS (2017) Columnar-intrinsic cues shape premotor input specificity in locomotor circuits. Cell Rep 21:867–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baek M, Menon V, Jessell TM, Hantman AW, Dasen JS (2019) Molecular logic of spinocerebellar tract neuron diversity and connectivity. Cell Rep 27(2620–2635):e2624

    Google Scholar 

  • Balaskas N, Ribeiro A, Panovska J, Dessaud E, Sasai N, Page KM, Briscoe J, Ribes V (2012) Gene regulatory logic for reading the Sonic Hedgehog signaling gradient in the vertebrate neural tube. Cell 148:273–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balaskas N, Abbott LF, Jessell TM, Ng D (2019) Positional strategies for connection specificity and synaptic organization in spinal sensory-motor circuits. Neuron 102:1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beattie CE, Hatta K, Halpern ME, Liu HB, Eisen JS, Kimmel CB (1997) Temporal separation in the specification of primary and secondary motoneurons in zebrafish. Dev Biol 187:171–182

    Article  CAS  PubMed  Google Scholar 

  • Bello-Rojas S, Istrate AE, Kishore S, McLean DL (2019) Central and peripheral innervation patterns of defined axial motor units in larval zebrafish. J Comp Neurol 527:2557–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bel-Vialar S, Itasaki N, Krumlauf R (2002) Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups. Development 129:5103–5115

    Article  CAS  PubMed  Google Scholar 

  • Bermingham NA, Hassan BA, Wang VY, Fernandez M, Banfi S, Bellen HJ, Fritzsch B, Zoghbi HY (2001) Proprioceptor pathway development is dependent on MATH1. Neuron 30:411–422

    Article  CAS  PubMed  Google Scholar 

  • Bikoff JB, Gabitto MI, Rivard AF, Drobac E, Machado TA, Miri A, Brenner-Morton S, Famojure E, Diaz C, Alvarez FJ et al (2016) Spinal inhibitory interneuron diversity delineates variant motor microcircuits. Cell 165:207–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blum JA, Klemm S, Shadrach JL, Guttenplan KA, Nakayama L, Kathiria A, Hoang PT, Gautier O, Kaltschmidt JA, Greenleaf WJ et al (2021) Single-cell transcriptomic analysis of the adult mouse spinal cord reveals molecular diversity of autonomic and skeletal motor neurons. Nat Neurosci 24:572–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briscoe J, Pierani A, Jessell TM, Ericson J (2000) A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101:435–445

    Article  CAS  PubMed  Google Scholar 

  • Britz O, Zhang J, Grossmann KS, Dyck J, Kim JC, Dymecki S, Gosgnach S, Goulding M (2015) A genetically defined asymmetry underlies the inhibitory control of flexor-extensor locomotor movements. elife 4:e13038

    Article  PubMed  PubMed Central  Google Scholar 

  • Butler SJ, Bronner ME (2015) From classical to current: analyzing peripheral nervous system and spinal cord lineage and fate. Dev Biol 398:135–146

    Article  CAS  PubMed  Google Scholar 

  • Catela C, Shin MM, Lee DH, Liu JP, Dasen JS (2016) Hox proteins coordinate motor neuron differentiation and connectivity programs through Ret/Gfralpha genes. Cell Rep 14:1901–1915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catela C, Correa E, Wen K, Aburas J, Croci L, Consalez GG, Kratsios P (2019) An ancient role for collier/Olf/Ebf (COE)-type transcription factors in axial motor neuron development. Neural Dev 14:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakkalakal JV, Nishimune H, Ruas JL, Spiegelman BM, Sanes JR (2010) Retrograde influence of muscle fibers on their innervation revealed by a novel marker for slow motoneurons. Development 137:3489–3499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang Q, Gonzalez M, Pinter MJ, Balice-Gordon RJ (1999) Gap junctional coupling and patterns of connexin expression among neonatal rat lumbar spinal motor neurons. J Neurosci 19:10813–10828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HH, Yip JW, Stewart AF, Frank E (2002) Differential expression of a transcription regulatory factor, the LIM domain only 4 protein Lmo4, in muscle sensory neurons. Development 129:4879–4889

    Article  CAS  PubMed  Google Scholar 

  • Chen HH, Hippenmeyer S, Arber S, Frank E (2003) Development of the monosynaptic stretch reflex circuit. Curr Opin Neurobiol 13:96–102

    Article  CAS  PubMed  Google Scholar 

  • Chevallier S, Jan Ijspeert A, Ryczko D, Nagy F, Cabelguen JM (2008) Organisation of the spinal central pattern generators for locomotion in the salamander: biology and modelling. Brain Res Rev 57:147–161

    Article  PubMed  Google Scholar 

  • Dasen JS (2009) Transcriptional networks in the early development of sensory-motor circuits. Curr Top Dev Biol 87:119–148

    Article  PubMed  Google Scholar 

  • Dasen JS, Jessell TM (2009) Hox networks and the origins of motor neuron diversity. Curr Top Dev Biol 88:169–200

    Article  CAS  PubMed  Google Scholar 

  • Dasen JS, Liu JP, Jessell TM (2003) Motor neuron columnar fate imposed by sequential phases of Hox-c activity. Nature 425:926–933

    Article  CAS  PubMed  Google Scholar 

  • Dasen JS, Tice BC, Brenner-Morton S, Jessell TM (2005) A Hox regulatory network establishes motor neuron pool identity and target-muscle connectivity. Cell 123:477–491

    Article  CAS  PubMed  Google Scholar 

  • Dasen JS, De Camilli A, Wang B, Tucker PW, Jessell TM (2008) Hox repertoires for motor neuron diversity and connectivity gated by a single accessory factor, FoxP1. Cell 134:304–316

    Article  CAS  PubMed  Google Scholar 

  • De Marco Garcia NV, Jessell TM (2008) Early motor neuron pool identity and muscle nerve trajectory defined by postmitotic restrictions in Nkx6.1 activity. Neuron 57:217–231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Nooij JC, Doobar S, Jessell TM (2013) Etv1 inactivation reveals proprioceptor subclasses that reflect the level of NT3 expression in muscle targets. Neuron 77:1055–1068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dykes IM, Tempest L, Lee SI, Turner EE (2011) Brn3a and Islet1 act epistatically to regulate the gene expression program of sensory differentiation. J Neurosci 31:9789–9799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberhart J, Swartz ME, Koblar SA, Pasquale EB, Krull CE (2002) EphA4 constitutes a population-specific guidance cue for motor neurons. Dev Biol 247:89–101

    Article  CAS  PubMed  Google Scholar 

  • Eccles JC, Eccles RM, Lundberg A (1957) The convergence of monosynaptic excitatory afferents on to many different species of alpha motoneurones. J Physiol 137:22–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Manira A (2014) Dynamics and plasticity of spinal locomotor circuits. Curr Opin Neurobiol 29:133–141

    Article  PubMed  CAS  Google Scholar 

  • Ericson J, Rashbass P, Schedl A, Brenner-Morton S, Kawakami A, van Heyningen V, Jessell TM, Briscoe J (1997) Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90:169–180

    Article  CAS  PubMed  Google Scholar 

  • Espinosa-Medina I, Saha O, Boismoreau F, Chettouh Z, Rossi F, Richardson WD, Brunet JF (2016) The sacral autonomic outflow is sympathetic. Science 354:893–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esposito MS, Capelli P, Arber S (2014) Brainstem nucleus MdV mediates skilled forelimb motor tasks. Nature 508:351–356

    Article  CAS  PubMed  Google Scholar 

  • Falgairolle M, Puhl JG, Pujala A, Liu W, O’Donovan MJ (2017) Motoneurons regulate the central pattern generator during drug-induced locomotor-like activity in the neonatal mouse. elife 6:e26622

    Article  PubMed  PubMed Central  Google Scholar 

  • Fetcho JR (1987) A review of the organization and evolution of motoneurons innervating the axial musculature of vertebrates. Brain Res 434:243–280

    Article  CAS  PubMed  Google Scholar 

  • Fetcho JR (1992) The spinal motor system in early vertebrates and some of its evolutionary changes. Brain Behav Evol 40:82–97

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Elliott KL, Glover JC (2017) Gaskell revisited: new insights into spinal autonomics necessitate a revised motor neuron nomenclature. Cell Tissue Res 370:195–209

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukuhara K, Imai F, Ladle DR, Katayama K, Leslie JR, Arber S, Jessell TM, Yoshida Y (2013) Specificity of monosynaptic sensory-motor connections imposed by repellent Sema3E-PlexinD1 signaling. Cell Rep 5:748–758

    Article  CAS  PubMed  Google Scholar 

  • Fulton BP, Miledi R, Takahashi T (1980) Electrical synapses between motoneurons in the spinal cord of the newborn rat. Proc R Soc Lond B Biol Sci 208:115–120

    Article  CAS  PubMed  Google Scholar 

  • Goetz C, Pivetta C, Arber S (2015) Distinct limb and trunk premotor circuits establish laterality in the spinal cord. Neuron 85:131–144

    Article  CAS  PubMed  Google Scholar 

  • Golden MG, Dasen JS (2012) Polycomb repressive complex 1 activities determine the columnar organization of motor neurons. Genes Dev 26:2236–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goulding M (2009) Circuits controlling vertebrate locomotion: moving in a new direction. Nat Rev Neurosci 10:507–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griener A, Zhang W, Kao H, Wagner C, Gosgnach S (2015) Probing diversity within subpopulations of locomotor-related V0 interneurons. Dev Neurobiol 75:1189–1203

    Article  PubMed  Google Scholar 

  • Grillner S (2006) Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52:751–766

    Article  CAS  PubMed  Google Scholar 

  • Grillner S, Jessell TM (2009) Measured motion: searching for simplicity in spinal locomotor networks. Curr Opin Neurobiol 19:572–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutman CR, Ajmera MK, Hollyday M (1993) Organization of motor pools supplying axial muscles in the chicken. Brain Res 609:129–136

    Article  CAS  PubMed  Google Scholar 

  • Haase G, Dessaud E, Garces A, de Bovis B, Birling M, Filippi P, Schmalbruch H, Arber S, deLapeyriere O (2002) GDNF acts through PEA3 to regulate cell body positioning and muscle innervation of specific motor neuron pools. Neuron 35:893–905

    Article  CAS  PubMed  Google Scholar 

  • Hanley O, Zewdu R, Cohen LJ, Jung H, Lacombe J, Philippidou P, Lee DH, Selleri L, Dasen JS (2016) Parallel Pbx-dependent pathways govern the coalescence and fate of motor columns. Neuron 91:1005–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson MG, Landmesser LT (2004) Normal patterns of spontaneous activity are required for correct motor axon guidance and the expression of specific guidance molecules. Neuron 43:687–701

    Article  CAS  PubMed  Google Scholar 

  • Hanson MG, Landmesser LT (2006) Increasing the frequency of spontaneous rhythmic activity disrupts pool-specific axon fasciculation and pathfinding of embryonic spinal motoneurons. J Neurosci 26:12769–12780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi M, Hinckley CA, Driscoll SP, Moore NJ, Levine AJ, Hilde KL, Sharma K, Pfaff SL (2018) Graded arrays of spinal and supraspinal V2a interneuron subtypes underlie forelimb and hindlimb motor control. Neuron 97:869–884 e865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinckley CA, Alaynick WA, Gallarda BW, Hayashi M, Hilde KL, Driscoll SP, Dekker JD, Tucker HO, Sharpee TO, Pfaff SL (2015) Spinal locomotor circuits develop using hierarchical rules based on motorneuron position and identity. Neuron 87:1008–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollyday M (1980) Organization of motor pools in the chick lumbar lateral motor column. J Comp Neurol 194:143–170

    Article  CAS  PubMed  Google Scholar 

  • Hollyday M, Jacobson RD (1990) Location of motor pools innervating chick wing. J Comp Neurol 302:575–588

    Article  CAS  PubMed  Google Scholar 

  • Hollyday M, Hamburger V, Farris JM (1977) Localization of motor neuron pools supplying identified muscles in normal and supernumerary legs of chick embryo. Proc Natl Acad Sci U S A 74:3582–3586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holst RJ, Bone Q (1993) On bipedalism in skates and rays. Philos Trans R Soc B 339:105–108

    Article  Google Scholar 

  • Honig MG, Frase PA, Camilli SJ (1998) The spatial relationships among cutaneous, muscle sensory and motoneuron axons during development of the chick hindlimb. Development 125:995–1004

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson SA, Cheesman SE, Hale LA, Boone JQ, Eisen JS (2007) Nkx6 proteins specify one zebrafish primary motoneuron subtype by regulating late islet1 expression. Development 134:1671–1677

    Article  CAS  PubMed  Google Scholar 

  • Imai F, Yoshida Y (2018) Molecular mechanisms underlying monosynaptic sensory-motor circuit development in the spinal cord. Dev Dyn 247:581–587

    Article  PubMed  PubMed Central  Google Scholar 

  • Inoue K, Ozaki S, Shiga T, Ito K, Masuda T, Okado N, Iseda T, Kawaguchi S, Ogawa M, Bae SC et al (2002) Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nat Neurosci 5:946–954

    Article  CAS  PubMed  Google Scholar 

  • Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1:20–29

    Article  CAS  PubMed  Google Scholar 

  • Jessell TM, Surmeli G, Kelly JS (2011) Motor neurons and the sense of place. Neuron 72:419–424

    Article  CAS  PubMed  Google Scholar 

  • Ji SJ, Zhuang B, Falco C, Schneider A, Schuster-Gossler K, Gossler A, Sockanathan S (2006) Mesodermal and neuronal retinoids regulate the induction and maintenance of limb innervating spinal motor neurons. Dev Biol 297:249–261

    Article  CAS  PubMed  Google Scholar 

  • Jung H, Dasen JS (2015) Evolution of patterning systems and circuit elements for locomotion. Dev Cell 32:408–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung H, Lacombe J, Mazzoni EO, Liem KF Jr, Grinstein J, Mahony S, Mukhopadhyay D, Gifford DK, Young RA, Anderson KV et al (2010) Global control of motor neuron topography mediated by the repressive actions of a single hox gene. Neuron 67:781–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung H, Mazzoni EO, Soshnikova N, Hanley O, Venkatesh B, Duboule D, Dasen JS (2014) Evolving Hox activity profiles govern diversity in locomotor systems. Dev Cell 29:171–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung H, Baek M, D’Elia KP, Boisvert C, Currie PD, Tay BH, Venkatesh B, Brown SM, Heguy A, Schoppik D et al (2018) The ancient origins of neural substrates for land walking. Cell 172:667–682 e615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kania A, Jessell TM (2003) Topographic motor projections in the limb imposed by LIM homeodomain protein regulation of ephrin-A:EphA interactions. Neuron 38:581–596

    Article  CAS  PubMed  Google Scholar 

  • Kania A, Johnson RL, Jessell TM (2000) Coordinate roles for LIM homeobox genes in directing the dorsoventral trajectory of motor axons in the vertebrate limb. Cell 102:161–173

    Article  CAS  PubMed  Google Scholar 

  • Kanning KC, Kaplan A, Henderson CE (2010) Motor neuron diversity in development and disease. Annu Rev Neurosci 33:409–440

    Article  CAS  PubMed  Google Scholar 

  • Kiehn O (2016) Decoding the organization of spinal circuits that control locomotion. Nat Rev Neurosci 17:224–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King BL, Gillis JA, Carlisle HR, Dahn RD (2011) A natural deletion of the HoxC cluster in elasmobranch fishes. Science 334:1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kmita M, Duboule D (2003) Organizing Axes in Time and Space; 25 Years of Colinear Tinkering. Science 301(5631):331–333. https://doi.org/10.1126/science.1085753

    Article  CAS  PubMed  Google Scholar 

  • Koch SC, Del Barrio MG, Dalet A, Gatto G, Gunther T, Zhang JM, Seidler B, Saur D, Schule R, Goulding M (2017) ROR beta spinal interneurons gate sensory transmission during locomotion to secure a fluid walking gait. Neuron 96:1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koester DM, Spirito CP (2003) Punting: an unusual mode of locomotion in the little skate, Leucoraja erinacea (Chondrichthyes: Rajidae). Copeia 2003:553–561

    Article  Google Scholar 

  • Lacombe J, Hanley O, Jung H, Philippidou P, Surmeli G, Grinstein J, Dasen JS (2013) Genetic and functional modularity of Hox activities in the specification of limb-innervating motor neurons. PLoS Genet 9:e1003184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lallemend F, Ernfors P (2012) Molecular interactions underlying the specification of sensory neurons. Trends Neurosci 35:373–381

    Article  CAS  PubMed  Google Scholar 

  • Landmesser L (1978a) The development of motor projection patterns in the chick hind limb. J Physiol 284:391–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landmesser L (1978b) The distribution of motoneurones supplying chick hind limb muscles. J Physiol 284:371–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landmesser LT (2001) The acquisition of motoneuron subtype identity and motor circuit formation. Int J Dev Neurosci 19:175–182

    Article  CAS  PubMed  Google Scholar 

  • Lanuza GM, Gosgnach S, Pierani A, Jessell TM, Goulding M (2004) Genetic identification of spinal interneurons that coordinate left-right locomotor activity necessary for walking movements. Neuron 42:375–386

    Article  CAS  PubMed  Google Scholar 

  • Leal F, Cohn MJ (2018) Developmental, genetic, and genomic insights into the evolutionary loss of limbs in snakes. Genesis 56:e23077

    Article  Google Scholar 

  • Lee SK, Pfaff SL (2003) Synchronization of neurogenesis and motor neuron specification by direct coupling of bHLH and homeodomain transcription factors. Neuron 38:731–745

    Article  CAS  PubMed  Google Scholar 

  • Lee SK, Lee B, Ruiz EC, Pfaff SL (2005) Olig2 and Ngn2 function in opposition to modulate gene expression in motor neuron progenitor cells. Genes Dev 19:282–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Lee B, Joshi K, Pfaff SL, Lee JW, Lee SK (2008) A regulatory network to segregate the identity of neuronal subtypes. Dev Cell 14:877–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Lee B, Lee JW, Lee SK (2009) Retinoid signaling and neurogenin2 function are coupled for the specification of spinal motor neurons through a chromatin modifier CBP. Neuron 62:641–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Cuvillier JM, Lee B, Shen R, Lee JW, Lee SK (2012) Fusion protein Isl1-Lhx3 specifies motor neuron fate by inducing motor neuron genes and concomitantly suppressing the interneuron programs. Proc Natl Acad Sci U S A 109:3383–3388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang X, Song MR, Xu Z, Lanuza GM, Liu Y, Zhuang T, Chen Y, Pfaff SL, Evans SM, Sun Y (2011) Isl1 is required for multiple aspects of motor neuron development. Mol Cell Neurosci 47:215–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin JH, Saito T, Anderson DJ, Lance-Jones C, Jessell TM, Arber S (1998) Functionally related motor neuron pool and muscle sensory afferent subtypes defined by coordinate ETS gene expression. Cell 95:393–407

    Article  CAS  PubMed  Google Scholar 

  • Liu DW, Westerfield M (1988) Function of identified motoneurones and coordination of primary and secondary motor systems during zebra fish swimming. J Physiol Lond 403:73–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JP, Laufer E, Jessell TM (2001) Assigning the positional identity of spinal motor neurons: rostrocaudal patterning of Hox-c expression by FGFs, Gdf11, and retinoids. Neuron 32:997–1012

    Article  CAS  PubMed  Google Scholar 

  • Livet J, Sigrist M, Stroebel S, De Paola V, Price SR, Henderson CE, Jessell TM, Arber S (2002) ETS gene Pea3 controls the central position and terminal arborization of specific motor neuron pools. Neuron 35:877–892

    Article  CAS  PubMed  Google Scholar 

  • Lucifora LO, Vassallo AI (2002) Walking in skates (Chondrichthyes, Rajidae): anatomy, behaviour and analogies to tetrapod locomotion. Biol J Linn Soc 77:35–41

    Article  Google Scholar 

  • Luria V, Krawchuk D, Jessell TM, Laufer E, Kania A (2008) Specification of motor axon trajectory by ephrin-B:EphB signaling: symmetrical control of axonal patterning in the developing limb. Neuron 60:1039–1053

    Article  CAS  PubMed  Google Scholar 

  • Ma YC, Song MR, Park JP, Henry Ho HY, Hu L, Kurtev MV, Zieg J, Ma Q, Pfaff SL, Greenberg ME (2008) Regulation of motor neuron specification by phosphorylation of neurogenin 2. Neuron 58:65–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macesic LJ, Kajiura SM (2010) Comparative punting kinematics and pelvic fin musculature of benthic batoids. J Morphol 271:1219–1228

    Article  PubMed  Google Scholar 

  • Machado CB, Kanning KC, Kreis P, Stevenson D, Crossley M, Nowak M, Iacovino M, Kyba M, Chambers D, Blanc E et al (2014) Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons. Development 141:784–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machado TA, Pnevmatikakis E, Paninski L, Jessell TM, Miri A (2015) Primacy of flexor locomotor pattern revealed by ancestral reversion of motor neuron identity. Cell 162:338–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzoni EO, Mahony S, Closser M, Morrison CA, Nedelec S, Williams DJ, An D, Gifford DK, Wichterle H (2013a) Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity. Nat Neurosci 16:1219–1227

    Article  CAS  PubMed  Google Scholar 

  • Mazzoni EO, Mahony S, Peljto M, Patel T, Thornton SR, McCuine S, Reeder C, Boyer LA, Young RA, Gifford DK et al (2013b) Saltatory remodeling of Hox chromatin in response to rostrocaudal patterning signals. Nat Neurosci 16:1191–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLean DL, Fan J, Higashijima S, Hale ME, Fetcho JR (2007) A topographic map of recruitment in spinal cord. Nature 446:71–75

    Article  CAS  PubMed  Google Scholar 

  • Mears SC, Frank E (1997) Formation of specific monosynaptic connections between muscle spindle afferents and motoneurons in the mouse. J Neurosci 17:3128–3135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendell LM, Henneman E (1968) Terminals of single Ia fibers: distribution within a pool of 300 homonymous motor neurons. Science 160:96–98

    Article  CAS  PubMed  Google Scholar 

  • Mendelsohn AI, Simon CM, Abbott LF, Mentis GZ, Jessell TM (2015) Activity regulates the incidence of heteronymous sensory-motor connections. Neuron 87:111–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendelsohn AI, Dasen JS, Jessell TM (2017) Divergent Hox coding and evasion of retinoid signaling specifies motor neurons innervating digit muscles. Neuron 93:792–805 e794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendelson B, Frank E (1991) Specific monosynaptic sensory-motor connections form in the absence of patterned neural activity and motoneuronal cell death. J Neurosci 11:1390–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menelaou E, McLean DL (2012) A gradient in endogenous rhythmicity and oscillatory drive matches recruitment order in an axial motor pool. J Neurosci 32:10925–10939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mentis GZ, Alvarez FJ, Bonnot A, Richards DS, Gonzalez-Forero D, Zerda R, O’Donovan MJ (2005) Noncholinergic excitatory actions of motoneurons in the neonatal mammalian spinal cord. Proc Natl Acad Sci U S A 102:7344–7349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzis V, Steinhauser S, Pakanavicius E, Gouti M, Stamataki D, Ivanovitch K, Watson T, Rayon T, Mousavy Gharavy SN, Lovell-Badge R et al (2018) Nervous system regionalization entails axial allocation before neural differentiation. Cell 175:1105–1118 e1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milner LD, Landmesser LT (1999) Cholinergic and GABAergic inputs drive patterned spontaneous motoneuron activity before target contact. J Neurosci 19:3007–3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuguchi R, Sugimori M, Takebayashi H, Kosako H, Nagao M, Yoshida S, Nabeshima Y, Shimamura K, Nakafuku M (2001) Combinatorial roles of olig2 and neurogenin2 in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. Neuron 31:757–771

    Article  CAS  PubMed  Google Scholar 

  • Muller D, Cherukuri P, Henningfeld K, Poh CH, Wittler L, Grote P, Schluter O, Schmidt J, Laborda J, Bauer SR et al (2014) Dlk1 promotes a fast motor neuron biophysical signature required for peak force execution. Science 343:1264–1266

    Article  PubMed  CAS  Google Scholar 

  • Murakami Y, Tanaka M (2011) Evolution of motor innervation to vertebrate fins and limbs. Dev Biol 355:164–172

    Article  CAS  PubMed  Google Scholar 

  • Myers PZ, Eisen JS, Westerfield M (1986) Development and axonal outgrowth of identified motoneurons in the zebrafish. J Neurosci 6:2278–2289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narendra V, Rocha PP, An D, Raviram R, Skok JA, Mazzoni EO, Reinberg D (2015) CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science 347:1017–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimaru H, Restrepo CE, Ryge J, Yanagawa Y, Kiehn O (2005) Mammalian motor neurons corelease glutamate and acetylcholine at central synapses. Proc Natl Acad Sci U S A 102:5245–5249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordström U, Maier E, Jessell TM, Edlund T, Nusse R (2006) An Early Role for Wnt Signaling in Specifying Neural Patterns of Cdx and Hox Gene Expression and Motor Neuron Subtype Identity. PLoS Biology 4(8):e252. https://doi.org/10.1371/journal.pbio.0040252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novitch BG, Chen AI, Jessell TM (2001) Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 31:773–789

    Article  CAS  PubMed  Google Scholar 

  • Novitch BG, Wichterle H, Jessell TM, Sockanathan S (2003) A requirement for retinoic acid-mediated transcriptional activation in ventral neural patterning and motor neuron specification. Neuron 40:81–95

    Article  CAS  PubMed  Google Scholar 

  • Parker HJ, Krumlauf R (2020) A Hox gene regulatory network for hindbrain segmentation. Curr Top Dev Biol 139:169–203

    Article  CAS  PubMed  Google Scholar 

  • Patel TD, Kramer I, Kucera J, Niederkofler V, Jessell TM, Arber S, Snider WD (2003) Peripheral NT3 signaling is required for ETS protein expression and central patterning of proprioceptive sensory afferents. Neuron 38:403–416

    Article  CAS  PubMed  Google Scholar 

  • Pecho-Vrieseling E, Sigrist M, Yoshida Y, Jessell TM, Arber S (2009) Specificity of sensory-motor connections encoded by Sema3e-Plxnd1 recognition. Nature 459:842–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peljto M, Dasen JS, Mazzoni EO, Jessell TM, Wichterle H (2010) Functional Diversity of ESC-Derived Motor Neuron Subtypes Revealed through Intraspinal Transplantation. Cell Stem Cell 7(3):355–366. https://doi.org/10.1016/j.stem.2010.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philippidou P, Dasen JS (2013) Hox genes: choreographers in neural development, architects of circuit organization. Neuron 80:12–34

    Article  CAS  PubMed  Google Scholar 

  • Philippidou P, Walsh CM, Aubin J, Jeannotte L, Dasen JS (2012) Sustained Hox5 gene activity is required for respiratory motor neuron development. Nat Neurosci 15:1636–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poliak S, Norovich AL, Yamagata M, Sanes JR, Jessell TM (2016) Muscle-type identity of proprioceptors specified by spatially restricted signals from limb mesenchyme. Cell 164:512–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad A, Hollyday M (1991) Development and migration of avian sympathetic preganglionic neurons. J Comp Neurol 307:237–258

    Article  CAS  PubMed  Google Scholar 

  • Price SR, De Marco Garcia NV, Ranscht B, Jessell TM (2002) Regulation of Motor Neuron Pool Sorting by Differential Expression of Type II Cadherins. Cell 109(2):205–216. https://doi.org/10.1016/S0092-8674(02)00695-5

    Article  CAS  PubMed  Google Scholar 

  • Rhee HS, Closser M, Guo Y, Bashkirova EV, Tan GC, Gifford DK, Wichterle H (2016) Expression of terminal effector genes in mammalian neurons is maintained by a dynamic relay of transient enhancers. Neuron 92:1252–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribes V, Briscoe J (2009) Establishing and interpreting graded Sonic Hedgehog signaling during vertebrate neural tube patterning: the role of negative feedback. Cold Spring Harb Perspect Biol 1:a002014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romanes GJ (1941) Cell columns in the spinal cord of a human foetus of fourteen weeks. J Anat 75(145–152):141

    Google Scholar 

  • Romanes GJ (1942) The development and significance of the cell columns in the ventral horn of the cervical and upper thoracic spinal cord of the rabbit. J Anat Lond 76:112–130

    Google Scholar 

  • Romer AS, Parsons TS (1977) The vertebrate body, 5th edn. Saunders, Philadelphia

    Google Scholar 

  • Rosenberger LJ (2001) Pectoral fin locomotion in batoid fishes: undulation versus oscillation. J Exp Biol 204:379–394

    Article  CAS  PubMed  Google Scholar 

  • Rousso DL, Gaber ZB, Wellik D, Morrisey EE, Novitch BG (2008) Coordinated actions of the forkhead protein Foxp1 and Hox proteins in the columnar organization of spinal motor neurons. Neuron 59:226–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagner A, Briscoe J (2019) Establishing neuronal diversity in the spinal cord: a time and a place. Development 146:dev182154

    Article  CAS  PubMed  Google Scholar 

  • Sagner A, Gaber ZB, Delile J, Kong JH, Rousso DL, Pearson CA, Weicksel SE, Melchionda M, Mousavy Gharavy SN, Briscoe J et al (2018) Olig2 and Hes regulatory dynamics during motor neuron differentiation revealed by single cell transcriptomics. PLoS Biol 16:e2003127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seredick SD, Van Ryswyk L, Hutchinson SA, Eisen JS (2012) Zebrafish Mnx proteins specify one motoneuron subtype and suppress acquisition of interneuron characteristics. Neural Dev 7:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seredick S, Hutchinson SA, Van Ryswyk L, Talbot JC, Eisen JS (2014) Lhx3 and Lhx4 suppress Kolmer-Agduhr interneuron characteristics within zebrafish axial motoneurons. Development 141:3900–3909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah V, Drill E, Lance-Jones C (2004) Ectopic expression of Hoxd10 in thoracic spinal segments induces motoneurons with a lumbosacral molecular profile and axon projections to the limb. Dev Dyn 231:43–56

    Article  CAS  PubMed  Google Scholar 

  • Sharma K, Sheng HZ, Lettieri K, Li H, Karavanov A, Potter S, Westphal H, Pfaff SL (1998) LIM homeodomain factors Lhx3 and Lhx4 assign subtype identities for motor neurons. Cell 95:817–828

    Article  CAS  PubMed  Google Scholar 

  • Sharma K, Leonard AE, Lettieri K, Pfaff SL (2000) Genetic and epigenetic mechanisms contribute to motor neuron pathfinding. Nature 406:515–519

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Flaherty K, Lezgiyeva K, Wagner DE, Klein AM, Ginty DD (2020) The emergence of transcriptional identity in somatosensory neurons. Nature 577:392–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin MM, Catela C, Dasen J (2020) Intrinsic control of neuronal diversity and synaptic specificity in a proprioceptive circuit. elife 9:e56374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasaki R, Pfaff SL (2002) Transcriptional codes and the control of neuronal identity. Annu Rev Neurosci 25:251–281

    Article  CAS  PubMed  Google Scholar 

  • Shirasaki R, Lewcock JW, Lettieri K, Pfaff SL (2006) FGF as a target-derived chemoattractant for developing motor axons genetically programmed by the LIM code. Neuron 50:841–853

    Article  CAS  PubMed  Google Scholar 

  • Smith CL, Hollyday M (1983) The development and postnatal organization of motor nuclei in the rat thoracic spinal cord. J Comp Neurol 220:16–28

    Article  CAS  PubMed  Google Scholar 

  • Sockanathan S, Jessell TM (1998) Motor neuron-derived retinoid signaling specifies the subtype identity of spinal motor neurons. Cell 94:503–514

    Article  CAS  PubMed  Google Scholar 

  • Song J, Ampatzis K, Bjornfors ER, El Manira A (2016) Motor neurons control locomotor circuit function retrogradely via gap junctions. Nature 529:399–402

    Article  CAS  PubMed  Google Scholar 

  • Soshnikova N, Duboule D (2009) Science 324(5932):1320–1323. https://doi.org/10.1126/science.1171468

  • Stepien AE, Tripodi M, Arber S (2010) Monosynaptic rabies virus reveals premotor network organization and synaptic specificity of cholinergic partition cells. Neuron 68:456–472

    Article  CAS  PubMed  Google Scholar 

  • Stifani N (2014) Motor neurons and the generation of spinal motor neuron diversity. Front Cell Neurosci 8:293

    Article  PubMed  PubMed Central  Google Scholar 

  • Surmeli G, Akay T, Ippolito GC, Tucker PW, Jessell TM (2011) Patterns of spinal sensory-motor connectivity prescribed by a dorsoventral positional template. Cell 147:653–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweeney LB, Bikoff JB, Gabitto MI, Brenner-Morton S, Baek M, Yang JH, Tabak EG, Dasen JS, Kintner CR, Jessell TM (2018) Origin and segmental diversity of spinal inhibitory interneurons. Neuron 97:341–355 e343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talpalar AE, Bouvier J, Borgius L, Fortin G, Pierani A, Kiehn O (2013) Dual-mode operation of neuronal networks involved in left-right alternation. Nature 500:85–88

    Article  CAS  PubMed  Google Scholar 

  • Tan GC, Mazzoni EO, Wichterle H (2016) Iterative role of notch signaling in spinal motor neuron diversification. Cell Rep 16:907–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanabe Y, William C, Jessell TM (1998) Specification of motor neuron identity by the MNR2 homeodomain protein. Cell 95:67–80

    Article  CAS  PubMed  Google Scholar 

  • Thaler J, Harrison K, Sharma K, Lettieri K, Kehrl J, Pfaff SL (1999) Active suppression of interneuron programs within developing motor neurons revealed by analysis of homeodomain factor HB9. Neuron 23:675–687

    Article  CAS  PubMed  Google Scholar 

  • Thaler JP, Lee SK, Jurata LW, Gill GN, Pfaff SL (2002) LIM factor Lhx3 contributes to the specification of motor neuron and interneuron identity through cell-type-specific protein-protein interactions. Cell 110:237–249

    Article  CAS  PubMed  Google Scholar 

  • Thaler JP, Koo SJ, Kania A, Lettieri K, Andrews S, Cox C, Jessell TM, Pfaff SL (2004) A postmitotic role for Isl-class LIM homeodomain proteins in the assignment of visceral spinal motor neuron identity. Neuron 41:337–350

    Article  CAS  PubMed  Google Scholar 

  • Tiret L, Le Mouellic H, Maury M, Brulet P (1998) Increased apoptosis of motoneurons and altered somatotopic maps in the brachial spinal cord of Hoxc-8-deficient mice. Development 125:279–291

    Article  CAS  PubMed  Google Scholar 

  • Tosney KW (1987) Proximal tissues and patterned neurite outgrowth at the lumbosacral level of the chick-embryo – deletion of the dermamyotome. Dev Biol 122:540–558

    Article  CAS  PubMed  Google Scholar 

  • Tosney KW (1988) Proximal tissues and patterned neurite outgrowth at the lumbosacral level of the chick-embryo – partial and complete deletion of the somite. Dev Biol 127:266–286

    Article  CAS  PubMed  Google Scholar 

  • Tosney KW, Landmesser LT (1985a) Development of the major pathways for neurite outgrowth in the chick hindlimb. Dev Biol 109:193–214

    Article  CAS  PubMed  Google Scholar 

  • Tosney KW, Landmesser LT (1985b) Growth cone morphology and trajectory in the lumbosacral region of the chick embryo. J Neurosci 5:2345–2358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripodi M, Stepien AE, Arber S (2011) Motor antagonism exposed by spatial segregation and timing of neurogenesis. Nature 479:61–U84

    Article  CAS  PubMed  Google Scholar 

  • Tsuchida T, Ensini M, Morton SB, Baldassare M, Edlund T, Jessell TM, Pfaff SL (1994) Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 79:957–970

    Article  CAS  PubMed  Google Scholar 

  • Tuthill JC, Azim E (2018) Proprioception. Curr Biol 28:R194–R203

    Article  CAS  PubMed  Google Scholar 

  • Vagnozzi AN, Garg K, Dewitz C, Moore MT, Cregg JM, Jeannotte L, Zampieri N, Landmesser LT, Philippidou P (2020) Phrenic-specific transcriptional programs shape respiratory motor output. elife 9:e52859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallstedt A, Muhr J, Pattyn A, Pierani A, Mendelsohn M, Sander M, Jessell TM, Ericson J (2001) Different levels of repressor activity assign redundant and specific roles to Nkx6 genes in motor neuron and interneuron specification. Neuron 31:743–755

    Article  CAS  PubMed  Google Scholar 

  • Vanderhorst VG, Holstege G (1997) Organization of lumbosacral motoneuronal cell groups innervating hindlimb, pelvic floor, and axial muscles in the cat. J Comp Neurol 382:46–76

    Article  CAS  PubMed  Google Scholar 

  • Velasco S, Ibrahim MM, Kakumanu A, Garipler G, Aydin B, Al-Sayegh MA, Hirsekorn A, Abdul-Rahman F, Satija R, Ohler U et al (2017) A multi-step transcriptional and chromatin state cascade underlies motor neuron programming from embryonic stem cells. Cell Stem Cell 20:205–217 e208

    Article  CAS  PubMed  Google Scholar 

  • Vermot J, Schuhbaur B, Le Mouellic H, McCaffery P, Garnier JM, Hentsch D, Brulet P, Niederreither K, Chambon P, Dolle P et al (2005) Retinaldehyde dehydrogenase 2 and Hoxc8 are required in the murine brachial spinal cord for the specification of Lim1+ motoneurons and the correct distribution of Islet1+ motoneurons. Development 132:1611–1621

    Article  CAS  PubMed  Google Scholar 

  • Vrieseling E, Arber S (2006) Target-induced transcriptional control of dendritic patterning and connectivity in motor neurons by the ETS gene Pea3. Cell 127:1439–1452

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wu H, Zelenin P, Fontanet P, Wanderoy S, Petitpre C, Comai G, Bellardita C, Xue-Franzen Y, Huettl RE et al (2019) Muscle-selective RUNX3 dependence of sensorimotor circuit development. Development 146:dev181750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110:385–397

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Wang G, Scott SA, Capecchi MR (2008) Hoxc10 and Hoxd10 regulate mouse columnar, divisional and motor pool identity of lumbar motoneurons. Development 135:171–182

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Schieren I, Qian Y, Zhang C, Jessell TM, de Nooij JC (2019) A role for sensory end organ-derived signals in regulating muscle spindle proprioceptor phenotype. J Neurosci 39:4252–4267

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuengert R, Hori K, Kibodeaux EE, McClellan JX, Morales JE, Huang TWP, Neul JL, Lai HC (2015) Origin of a non-Clarke’s column division of the dorsal spinocerebellar tract and the role of caudal proprioceptive neurons in motor function. Cell Rep 13:1258–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Lanuza GM, Britz O, Wang Z, Siembab VC, Zhang Y, Velasquez T, Alvarez FJ, Frank E, Goulding M (2014) V1 and v2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion. Neuron 82:138–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Anderson DJ (2002) The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109:61–73

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy S. Dasen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dasen, J.S. (2022). Establishing the Molecular and Functional Diversity of Spinal Motoneurons. In: O'Donovan, M.J., Falgairolle, M. (eds) Vertebrate Motoneurons. Advances in Neurobiology, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-031-07167-6_1

Download citation

Publish with us

Policies and ethics