Skip to main content

The Impact of the Lockdown Restrictions on Air Quality During COVID-19 Pandemic in Lombardy, Italy

  • Chapter
  • First Online:
Artificial Intelligence, Big Data and Data Science in Statistics

Abstract

Environmental agencies and scientists around Europe have reported that COVID-19 lockdown caused an extended environmental clean-up. Considering air quality, we focus on the Lombardy region (Northern Italy), which is at the same time the most populous region and the area most affected by COVID-19 in Italy. Lombardy is also one of the most polluted areas in the European Union. The central research hypothesis concerns if and how the first-wave restrictions imposed during the 2020 spring have improved the air quality in Lombardy and if the improvements are similar throughout the territory. To answer these questions, we use weekly data from January 2015 to mid-June 2020 for 74 ground monitoring stations and provided by the regional environmental protection agency (ARPA Lombardia). We estimate an autoregressive time series model with exogenous covariates (ARX) to assess the combined impact of meteorology, seasonality, trend, and lockdown on the NO2 concentrations at each monitoring site. We also propose using the LASSO algorithm to select the set of relevant covariates to model the concentrations and then estimate the effect of lockdown restrictions with a maximum likelihood post-LASSO estimator. Statistical modelling confirms a generalised NO2 reduction due to the lockdown throughout the whole region, despite considerable variability due to the morphological and geographical heterogeneity of Lombardy. Compared to the observed average variations, the estimated lockdown impacts are mitigated by meteorology and natural trends. Expectantly, the most significant and remarkable NO2 reductions have been estimated near urban and congested areas and in the proximity of industrialised sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Provinces: Varese (VA), Como (CO), Lecco (LC), Sondrio (SO), Bergamo (BG), Brescia (BS), Milano (MI), Monza e Brianza (MB), Pavia (PV), Lodi (LO), Cremona (CR), and Mantova (MN)

  2. 2.

    We computed four variables measuring the average wind speed blowing from North-East, South-East, South-West, and North-West.

References

  1. Agresti, V., Balzarini, A., Bonanno, R., Collino, E., Colzi, F., Lacavalla, Pirovano, M., Riva, G., Toppetti, A., Riva, F., Piccoli, A.: Gli effetti del lockdown sulla qualitá dell’aria a milano e in lombardia (2020). https://dossierse.it/05-2020-gli-effetti-del-lockdown-sulla-qualita-dellaria-a-milano-e-in-lombardia/

  2. Baldasano, J.M.: Covid-19 lockdown effects on air quality by no2 in the cities of Barcelona and Madrid (Spain). Sci. Total Environ. 741, 140353 (2020). ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2020.140353. http://www.sciencedirect.com/science/article/pii/S0048969720338754

  3. Belloni, A., Chernozhukov, V.: Least squares after model selection in high-dimensional sparse models. Bernoulli 19(2), 521–547 (2013). ISSN 1350-7265

    Article  MathSciNet  MATH  Google Scholar 

  4. Berman, J.D., Ebisu, K.: Changes in U.S. air pollution during the covid-19 pandemic. Sci. Total Environ. 739, 139864 (2020). ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2020.139864. http://www.sciencedirect.com/science/article/pii/S0048969720333842

  5. Bittanti, S.: Model Identification and Data Analysis. Wiley Online Library, New York (2019). ISBN 1119546362

    Google Scholar 

  6. Bollerslev, T., Wooldridge, J.M.: Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances. Econ. Rev. 11(2), 143–172 (1992). ISSN 0747-4938. https://doi.org/10.1080/07474939208800229

    Article  MathSciNet  MATH  Google Scholar 

  7. Cameletti, M.: The effect of corona virus lockdown on air pollution: Evidence from the city of Brescia in Lombardia region (Italy). Atmos. Environ. 239, 117794 (2020). ISSN 1352-2310. https://doi.org/10.1016/j.atmosenv.2020.117794. http://www.sciencedirect.com/science/article/pii/S1352231020305288

  8. Carugno, M., Consonni, D., Bertazzi, P.A., Biggeri, A., Baccini, M.: Temporal trends of pm10 and its impact on mortality in Lombardy, Italy. Environ. Pollut. 227, 280–286 (2017). ISSN 0269-7491

    Article  Google Scholar 

  9. Chen, M., Li, D., Ling, S.: Non-stationarity and quasi-maximum likelihood estimation on a double autoregressive model. J. Time Ser. Anal. 35(3), 189–202 (2014). ISSN 0143-9782. https://doi.org/10.1111/jtsa.12058. https://onlinelibrary.wiley.com/doi/abs/10.1111/jtsa.12058

  10. Collivignarelli, M.C., Abbà, A., Bertanza, G., Pedrazzani, R., Ricciardi, P., Carnevale Miino M.: Lockdown for covid-2019 in Milan: what are the effects on air quality? Sci. Total Environ. 732, 139280 (2020). ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2020.139280. http://www.sciencedirect.com/science/article/pii/S0048969720327972

  11. Connerton, P., Vicente de Assunção, J., Maura de Miranda, R., Dorothée Slovic, A., José Pérez-Martínez, P., Ribeiro, H.: Air quality during covid-19 in four megacities: lessons and challenges for public health. Int. J. Environ. Res. Public Health 17(14), 5067 (2020). ISSN 1660-4601. https://www.mdpi.com/1660-4601/17/14/5067

  12. European, E., Environmental Agency: Air Quality in Europe—2019 Report 16/10/2019 (2019)

    Google Scholar 

  13. Fassò, A.: Statistical assessment of air quality interventions. Stoch. Env. Res. Risk A. 27(7), 1651–1660 (2013). ISSN 1436-3240

    Article  Google Scholar 

  14. Finazzi, F., Fassò, A.: The impact of the covid-19 pandemic on Italian mobility. Significance (Oxford, England) 17(3), 17 (2020)

    Google Scholar 

  15. Hamilton, J.: Time Series Analysis. Princeton University Press, Princeton (1994). ISBN 9780691042893

    Google Scholar 

  16. Hastie, T., Tibshirani, R., Wainwright, M.: Statistical Learning with Sparsity: The Lasso and Generalizations. CRC Press, New York (2015). ISBN 1498712177

    Google Scholar 

  17. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer Series in Statistics). Springer, New York (2017)

    MATH  Google Scholar 

  18. Higham, J., Ramírez, C.A., Green, M., Morse, A.: UK covid-19 lockdown: 100 days of air pollution reduction? Air Qual. Atmos. Health 14(3), 1–8 (2020). ISSN 1873-9326

    Google Scholar 

  19. A. INEMAR ARPA Lombardia Settore Aria. Inemar Emission Inventory 2017: Emission in Lombardy Region—Final Data—Public Revision (2020). https://www.inemar.eu/xwiki/bin/view/InemarDatiWeb/Fonti+dei+dati

  20. Jarque, C.M., Bera, A.K.: A test for normality of observations and regression residuals. In: International Statistical Review/Revue Internationale de Statistique, pp. 163–172 (1987). ISSN 0306-7734

    Google Scholar 

  21. Kerimray, A., Baimatova, N., Ibragimova, O.P., Bukenov, B., Kenessov, B., Plotitsyn, P., Karaca, F.: Assessing air quality changes in large cities during covid-19 lockdowns: The impacts of traffic-free urban conditions in Almaty, Kazakhstan. Sci. Total Environ. 730, 139179 (2020). ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2020.139179. http://www.sciencedirect.com/science/article/pii/S0048969720326966

  22. Lee, L.-F.: Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models. Econometrica 72(6), 1899–1925 (2004). ISSN 0012-9682. https://doi.org/10.1111/j.1468-0262.2004.00558.x. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0262.2004.00558.x

  23. Ljung, G.M., Box, G.E.: On a measure of lack of fit in time series models. Biometrika 65(2), 297–303 (1978). ISSN 1464-3510

    Article  MATH  Google Scholar 

  24. Maranzano, P., Fassò, A., Pelagatti, M., Mudelsee, M.: Statistical modeling of the early-stage impact of a new traffic policy in Milan, Italy. Int. J. Environ. Res. Public Health 17(3), 1088 (2020). ISSN 1660-4601 (Electronic) 1660-4601 (Linking). https://doi.org/10.3390/ijerph17031088. https://www.mdpi.com/1660-4601/17/3/1088

  25. Nakada, L.Y.K., Urban, R.C.: Covid-19 pandemic: Impacts on the air quality during the partial lockdown in são Paulo state, Brazil. Sci. Total Environ. 730, 139087 (2020). ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2020.139087. http://www.sciencedirect.com/science/article/pii/S0048969720326048

  26. Raffaelli, K., Deserti, M., Stortini, M., Amorati, R., Vasconi, M., Giovannini, G.: Improving air quality in the Po valley, Italy: Some results by the life-IP-prepair project. Atmosphere 11(4), 429 (2020)

    Google Scholar 

  27. R. Regional Statistical Yearbook: Lombardia Regional Statistical Yearbook 2017/2018 (2017)

    Google Scholar 

  28. Ropkins, K., Tate, J.E.: Early observations on the impact of the covid-19 lockdown on air quality trends across the UK. Sci. Total Environ. 754, 142374 (2020). ISSN 0048-9697

    Article  Google Scholar 

  29. Sharma, S., Zhang, M., Anshika, Gao, J., Zhang, H., Kota, S.H.: Effect of restricted emissions during covid-19 on air quality in India. Sci. Total Environ. 728, 138878 (2020). ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2020.138878. http://www.sciencedirect.com/science/article/pii/S0048969720323950

  30. Singh, R.P., Chauhan, A.: Impact of lockdown on air quality in India during covid-19 pandemic. Air Qual. Atmos. Health 13(8), 921–928 (2020). ISSN 1873-9326. https://doi.org/10.1007/s11869-020-00863-1

    Article  Google Scholar 

  31. U. Switzerland Federal Statistics Office: Cross-border commuters statistics in 2018 (2019). https://www.bfs.admin.ch/bfs/it/home/statistiche/lavoro-reddito/rilevazioni/staf.assetdetail.7427558.html

  32. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. 58(1), 267–288 (1996). ISSN 0035-9246

    MathSciNet  MATH  Google Scholar 

  33. U. Ticino Statistics Office: Traffic in selected stations of Ticino historical data (2020). https://www3.ti.ch/DFE/DR/USTAT/allegati/tabella/T_110302_01C.xls

  34. Tobías, A., Carnerero, C., Reche, C., Massagué, J., Via, M., Minguillón, M.C., Alastuey, A., Querol, X.: Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ. 726, 138540 (2020). ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2020.138540. http://www.sciencedirect.com/science/article/pii/S0048969720320532

  35. White, H.: Maximum likelihood estimation of misspecified models. Econometrica 50(1), 1–25 (1982). ISSN 00129682, 14680262. https://doi.org/10.2307/1912526. http://www.jstor.org/stable/1912526

  36. Zangari, S., Hill, D.T., Charette, A.T., Mirowsky, J.E.: Air quality changes in New York city during the covid-19 pandemic. Sci. Total Environ. 742, 140496 (2020). ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2020.140496. http://www.sciencedirect.com/science/article/pii/S0048969720340183.

Download references

Acknowledgements

Map data copyrighted OpenStreetMap contributors and available from https://www.openstreetmap.org

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Maranzano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maranzano, P., Fassó, A. (2022). The Impact of the Lockdown Restrictions on Air Quality During COVID-19 Pandemic in Lombardy, Italy. In: Steland, A., Tsui, KL. (eds) Artificial Intelligence, Big Data and Data Science in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-031-07155-3_15

Download citation

Publish with us

Policies and ethics