Skip to main content

Operando Electrochemical Raman Spectroscopy

  • Chapter
  • First Online:
Springer Handbook of Advanced Catalyst Characterization

Abstract

Advances in nanoscience and particularly in the fabrication of sophisticated nanostructures have led to substantial progress in the design of catalytic materials. Probing species at an aqueous interface during electrochemical reactions poses a great challenge to experimentalists and has raised considerable attention over the past decades, which is especially intriguing in the field of electrocatalysis. Several approaches for coupling electrochemical measurements to spectroscopic characterization of the electrode itself have been established and such experimental setups now represent state-of-the-art analytical techniques. Alongside with such developments a substantial improvement of already existing technologies for the analysis of nanostructures has been achieved, rendering them suitable to address the aforementioned challenges. A prime example is the case of Raman spectroscopy, which has been substantially developed in recent years toward the study of adsorbed molecules and/or the state of a material during catalytic reactions.

Boosted by the discovery of the significant signal enhancement upon using nanostructured metals as substrates, Raman spectroscopy has evolved to become an appropriate tool for allowing the detection of Raman-active species in very small concentrations. Moreover, its versatility regarding operating conditions led to the development of operando electrochemical Raman spectroscopy (OERS), namely, Raman spectroscopic investigations of the electrochemical interfaces while electrochemical conversion under a controlled reaction rate is proceeding. Being electrochemists by training, we focus in this contribution on reactions linked to challenges in modern electrochemistry such as water electrolysis and CO2 conversion, and we highlight recent studies providing a comprehensive overview of developments important to the field. We aim to familiarize the reader with theoretical background of electrochemistry and Raman spectroscopy, and we broadly illustrate the implications of OERS for the understanding of fundamental electrochemical reactions and the elucidation of reaction mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smekal, A.: Zur Quantentheorie der Dispersion. Naturwissenschaften. 11, 873–875 (1923)

    CAS  Google Scholar 

  2. Raman, C.V., Krishnan, K.S.: Polarisation of scattered light-quanta. Nature. 122, 169 (1928)

    CAS  Google Scholar 

  3. Landsberg, G., Mandelstam, L.: Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen. Naturwissenschaften. 16, 557–558 (1928)

    CAS  Google Scholar 

  4. Komai, T., Kawamura, T., Kang, S., Nagashima, K., Yamamoto, Y.: In situ observation of gas hydrate behaviour under high pressure by Raman spectroscopy. J. Phys. Condens. Matter. 14, 11395–11400 (2002)

    CAS  Google Scholar 

  5. Welsh, H.L., Stansbury, E.J., Romanko, J., Feldman, T.: Raman spectroscopy of gases. J. Opt. Soc. Am. 45, 338 (1955)

    CAS  Google Scholar 

  6. Yu, Y., Lin, K., Zhou, X., Wang, H., Liu, S., Ma, X.: New C−H stretching vibrational spectral features in the Raman spectra of gaseous and liquid ethanol†. J. Phys. Chem. C. 111, 8971–8978 (2007)

    CAS  Google Scholar 

  7. Iwata, K., Okajima, H., Saha, S., Hamaguchi, H.-O.: Local structure formation in alkyl-imidazolium-based ionic liquids as revealed by linear and nonlinear Raman spectroscopy. Acc. Chem. Res. 40, 1174–1181 (2007)

    CAS  Google Scholar 

  8. Boyaci, I.H., Genis, H.E., Guven, B., Tamer, U., Alper, N.: A novel method for quantification of ethanol and methanol in distilled alcoholic beverages using Raman spectroscopy. J. Raman Spectrosc. 43, 1171–1176 (2012)

    CAS  Google Scholar 

  9. Carey, D.M., Korenowski, G.M.: Measurement of the Raman spectrum of liquid water. J. Chem. Phys. 108, 2669–2675 (1998)

    CAS  Google Scholar 

  10. Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    CAS  Google Scholar 

  11. Mammone, J.F., Sharma, S.K., Nicol, M.: Raman spectra of methanol and ethanol at pressures up to 100 kbar. J. Phys. Chem. 84, 3130–3134 (1980)

    CAS  Google Scholar 

  12. Frost, R.L., Henry, D.A., Weier, M.L., Martens, W.: Raman spectroscopy of three polymorphs of BiVO4: Clinobisvanite, dreyerite and pucherite, with comparisons to (VO4)3-bearing minerals: namibite, pottsite and schumacherite. J. Raman Spectrosc. 37, 722–732 (2006)

    CAS  Google Scholar 

  13. Griffith, W.P.: Raman spectroscopy of minerals. Nature. 224, 264–266 (1969)

    CAS  Google Scholar 

  14. Rygula, A., Majzner, K., Marzec, K.M., Kaczor, A., Pilarczyk, M., Baranska, M.: Raman spectroscopy of proteins: a review. J. Raman Spectrosc. 44, 1061–1076 (2013)

    CAS  Google Scholar 

  15. Butler, H.J., Ashton, L., Bird, B., Cinque, G., Curtis, K., Dorney, J., Esmonde-White, K., Fullwood, N.J., Gardner, B., Martin-Hirsch, P.L., Walsh, M.J., McAinsh, M.R., Stone, N., Martin, F.L.: Using Raman spectroscopy to characterize biological materials. Nat. Protoc. 11, 664–687 (2016)

    CAS  Google Scholar 

  16. Puppels, G.J., de Mul, F.F., Otto, C., Greve, J., Robert-Nicoud, M., Arndt-Jovin, D.J., Jovin, T.M.: Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature. 347, 301–303 (1990)

    CAS  Google Scholar 

  17. Das, R.S., Agrawal, Y.K.: Raman spectroscopy: recent advancements, techniques and applications. Vib. Spectrosc. 57, 163–176 (2011)

    CAS  Google Scholar 

  18. Smith, E., Dent, G.: Modern Raman Spectroscopy – A Practical Approach. John Wiley & Sons, Ltd, Chichester (2004)

    Google Scholar 

  19. Toporski, J., Dieing, T., Hollricher, O.: Confocal Raman Microscopy. Springer International Publishing, Cham (2018)

    Google Scholar 

  20. Kellner, R., et al. (eds.): Analytical Chemistry: The Approved Text to the FECS Curriculum Analytical Chemistry. Wiley-VCH, Weinheim (1998)

    Google Scholar 

  21. McCreery, R.L.: Raman Spectroscopy for Chemical Analysis. Wiley, Hoboken (2000)

    Google Scholar 

  22. Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R.R., Feld, M.S.: Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 99, 2957–2976 (1999)

    CAS  Google Scholar 

  23. Fleischmann, M., Hendra, P.J., McQuillan, A.J.: Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974)

    CAS  Google Scholar 

  24. McQuillan, A., Hendra, P.J., Fleischmann, M.: Raman spectroscopic investigation of silver electrodes. J. Electroanal. Chem. 65, 933–944 (1975)

    CAS  Google Scholar 

  25. Jeanmaire, D.L., van Duyne, R.P.: Surface Raman Spectroelectrochemistry. J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977)

    CAS  Google Scholar 

  26. Albrecht, M.G., Creighton, J.A.: Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977)

    CAS  Google Scholar 

  27. Kneipp, K., Wang, Y., Kneipp, H., Perelman, L.T., Itzkan, I., Dasari, R.R., Feld, M.S.: Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997)

    CAS  Google Scholar 

  28. Nie, S., Emory, R.: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 275, 1102–1106 (1997)

    CAS  Google Scholar 

  29. Schlögl, R.: Heterogeneous catalysis. Angew. Chem. Int. Ed. 54, 3465–3520 (2015)

    Google Scholar 

  30. Wang, Y., Becker, M., Wang, L., Liu, J., Scholz, R., Peng, J., Gösele, U., Christiansen, S., Kim, D.H., Steinhart, M.: Nanostructured gold films for SERS by block copolymer-templated galvanic displacement reactions. Nano Lett. 9, 2384–2389 (2009)

    CAS  Google Scholar 

  31. Moskovits, M.: Surface-enhanced Raman spectroscopy: a brief retrospective. J. Raman Spectrosc. 36, 485–496 (2005)

    CAS  Google Scholar 

  32. Schlücker, S.: Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew. Chem. Int. Ed. 53, 4756–4795 (2014)

    Google Scholar 

  33. Haynes, C.L., McFarland, A.D., Van Duyne, R.P., Haynes, C.L., McFarland, A.D., van Duyne, R.P.: Surface-enhanced Raman spectroscopy. Anal. Chem. 77, 338A–346A (2005)

    CAS  Google Scholar 

  34. Zhang, H., Wei, J., Zhang, X.-G., Zhang, Y.-J., Radjenovica, P.M., Wu, D.-Y., Pan, F., Tian, Z.-Q., Li, J.-F.: Plasmon-induced interfacial hot-electron transfer directly probed by Raman spectroscopy. Chem. 6, 689–702 (2020)

    CAS  Google Scholar 

  35. Liu, R., He, Z., Sun, J., Liu, J., Jiang, G.: Tracking the fate of surface plasmon resonance-generated hot electrons by in situ SERS surveying of catalyzed reaction. Small. 12, 6378–6387 (2016)

    CAS  Google Scholar 

  36. Xu, H., Aizpurua, J., Käll, M., Apell, P.: Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E. 62, 4318–4324 (2000)

    CAS  Google Scholar 

  37. Campion, A., Kambhampati, P.: Surface-enhanced Raman scattering. Chem. Soc. Rev. 27, 241 (1998)

    CAS  Google Scholar 

  38. Kneipp, K., Moskovits, M., Kneipp, H.: Surface-Enhanced Raman Scattering. Springer, Berlin Heidelberg (2006)

    Google Scholar 

  39. Haynes, C.L., Yonzon, C.R., Zhang, X., van Duyne, R.P.: Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection. J. Raman Spectrosc. 36, 471–484 (2005)

    CAS  Google Scholar 

  40. Gersten, J., Nitzan, A.: Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. J. Phys. Chem. 73, 3023–3037 (1980)

    CAS  Google Scholar 

  41. Gersten, J., Nitzan, A.: Spectroscopic properties of molecules interacting with small dielectric particles. J. Phys. Chem. 75, 1139–1152 (1981)

    CAS  Google Scholar 

  42. Gersten, J., Rayleigh, I.: Mie, and Raman scattering by molecules adsorbed on rough surfaces. J. Phys. Chem. 72, 5780–5781 (1980)

    CAS  Google Scholar 

  43. Wu, D.-Y., Duan, S., Ren, B., Tian, Z.-Q.: Density functional theory study of surface-enhanced Raman scattering spectra of pyridine adsorbed on noble and transition metal surfaces. J. Raman Spectrosc. 36, 533–540 (2005)

    CAS  Google Scholar 

  44. Otto, A., Bruckbauer, A., Chen, Y.X.: On the chloride activation in SERS and single molecule SERS. J. Mol. Struct. 661-662, 501–514 (2003)

    CAS  Google Scholar 

  45. Schlücker, S. (ed.): Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications. Weinheim, Wiley-VCH (2011)

    Google Scholar 

  46. Natan, M.J.: Concluding remarks: surface enhanced Raman scattering. Faraday Discuss. 132, 321 (2006)

    CAS  Google Scholar 

  47. Le Ru, E.C., Blackie, E., Meyer, M., Etchegoin, P.G.: Surface enhanced Raman scattering enhancement factors: a comprehensive study. J. Phys. Chem. C. 111, 13794–13803 (2007)

    Google Scholar 

  48. Öhl, D., Kayran, Y.U., Junqueira, J.R.C., Eßmann, V., Bobrowski, T., Schuhmann, W.: Optimized Ag nanovoid structures for probing electrocatalytic carbon dioxide reduction using operando surface-enhanced Raman spectroscopy. Langmuir. 34, 12293–12301 (2018)

    Google Scholar 

  49. Kneipp, K., Kneipp, H., Kneipp, J.: Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Acc. Chem. Res. 39, 443–450 (2006)

    CAS  Google Scholar 

  50. Creighton, J.A., Blatchford, C.G., Albrecht, M.G.: Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J. Chem. Soc., Faraday Trans. 2. 75, 790–798 (1979)

    CAS  Google Scholar 

  51. Wustholz, K.L., Henry, A.-I., McMahon, J.M., Freeman, R.G., Valley, N., Piotti, M.E., Natan, M.J., Schatz, G.C., van Duyne, R.P.: Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 132, 10903–10910 (2010)

    CAS  Google Scholar 

  52. Kayran, Y.U., Eßmann, V., Grützke, S., Schuhmann, W.: Selection of highly SERS-active nanostructures from a size gradient of Au nanovoids on a single bipolar electrode. ChemElectroChem. 3, 399–403 (2016)

    CAS  Google Scholar 

  53. Lang, X., Qiu, T., Yin, Y., Kong, F., Si, L., Hao, Q., Chu, P.K.: Silver nanovoid arrays for surface-enhanced Raman scattering. Langmuir. 28, 8799–8803 (2012)

    CAS  Google Scholar 

  54. Cintra, S., Abdelsalam, M.E., Bartlett, P.N., Baumberg, J.J., Kelf, T.A., Sugawara, Y., Russell, A.E.: Sculpted substrates for SERS. Faraday Discuss. 132, 191–199 (2006)

    CAS  Google Scholar 

  55. Yüksel, H., Özbay, A., Solmaz, R., Kahraman, M.: Fabrication and characterization of three-dimensional silver nanodomes: application for alkaline water electrolysis. Int. J. Hydrog. Energy. 42, 2476–2484 (2017)

    Google Scholar 

  56. Fang, Y., Seong, N.-H., Dlott, D.D.: Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science. 321, 385–388 (2008)

    Google Scholar 

  57. Lee, S.J., Morrill, A.R., Moskovits, M.: Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 128, 2200–2201 (2006)

    CAS  Google Scholar 

  58. Yu, W.W., White, I.M.: Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper. Anal. Chem. 82, 9626–9630 (2010)

    CAS  Google Scholar 

  59. Miccichè, C., Arrabito, G., Amato, F., Buscarino, G., Agnello, S., Pignataro, B.: Inkjet printing Ag nanoparticles for SERS hot spots. Anal. Methods. 10, 3215–3223 (2018)

    Google Scholar 

  60. Tao, A., Kim, F., Hess, C., Goldberger, J., He, R., Sun, Y., Xia, Y., Yang, P.: Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 3, 1229–1233 (2003)

    CAS  Google Scholar 

  61. Haynes, C.L., van Duyne, R.P.: Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B. 105, 5599–5611 (2001)

    CAS  Google Scholar 

  62. Alvarez-Puebla, R., Cui, B., Bravo-Vasquez, J.-P., Veres, T., Fenniri, H.: Nanoimprinted SERS-active substrates with tunable surface plasmon resonances. J. Phys. Chem. C. 111, 6720–6723 (2007)

    CAS  Google Scholar 

  63. Freeman, R.G., Grabar, K.C., Allison, K.J., Bright, R.M., Davis, J.A., Guthrie, A.P., Hommer, M.B., Jackson, M.A., Smith, P.C., Walter, D.G., Natan, M.J.: Self-assembled metal colloid monolayers: an approach to SERS substrates. Science. 267, 1629–1632 (1995)

    CAS  Google Scholar 

  64. Grabar, K.C., Freeman, R.G., Hommer, M.B., Natan, M.J.: Preparation and characterization of Au colloid monolayers. Anal. Chem. 67, 735–743 (1995)

    CAS  Google Scholar 

  65. Tian, Z.-Q., Ren, B., Wu, D.-Y.: Surface-enhanced Raman scattering: from Noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B. 106, 9463–9483 (2002)

    CAS  Google Scholar 

  66. Abdelsalam, M.E., Mahajan, S., Bartlett, P.N., Baumberg, J.J., Russell, A.E.: SERS at structured palladium and platinum surfaces. J. Am. Chem. Soc. 129, 7399–7406 (2007)

    CAS  Google Scholar 

  67. Stiles, P.L., Dieringer, J.A., Shah, N.C., van Duyne, R.P.: Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008)

    CAS  Google Scholar 

  68. Stöckle, R.M., Suh, Y.D., Deckert, V., Zenobi, R.: Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000)

    Google Scholar 

  69. Pettinger, B., Ren, B., Picardi, G., Schuster, R., Ertl, G.: Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Phys. Rev. Lett. 92, 96101 (2004)

    Google Scholar 

  70. Hayazawa, N., Inouye, Y., Sekkat, Z., Kawata, S.: Metallized tip amplification of near-field Raman scattering. Opt. Commun. 183, 333–336 (2000)

    CAS  Google Scholar 

  71. Tian, Z.-Q., Ren, B., Li, J.-F., Yang, Z.-L.: Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem. Commun. 121, 3514 (2007)

    Google Scholar 

  72. van Duyne, R.P., Haushalter, J.P.: Surface-enhanced Raman spectroscopy of adsorbates on semiconductor electrode surfaces: Tris(bipyridine)ruthenium(II) adsorbed on silver-modified n-gallium arsenide(100). J. Phys. Chem. 87, 2999–3003 (1983)

    Google Scholar 

  73. Fleischmann, M., Tian, Z.Q., Li, L.J.: Raman spectroscopy of adsorbates on thin film electrodes deposited on silver substrates. J. Electroanal. Chem. Interfacial Electrochem. 217, 397–410 (1987)

    CAS  Google Scholar 

  74. Mengoli, G., Musiani, M.M., Fleischman, M., Mao, B., Tian, Z.Q.: Enhanced Raman scattering from iron electrodes. Electrochim. Acta. 32, 1239–1245 (1987)

    CAS  Google Scholar 

  75. Park, S., Yang, P., Corredor, P., Weaver, M.J.: Transition metal-coated nanoparticle films: vibrational characterization with surface-enhanced Raman scattering. J. Am. Chem. Soc. 124, 2428–2429 (2002)

    CAS  Google Scholar 

  76. Mrozek, M.F., Xie, Y., Weaver, M.J.: Surface-enhanced Raman scattering on uniform platinum-group overlayers: preparation by redox replacement of Underpotential-deposited metals on gold. Anal. Chem. 73, 5953–5960 (2001)

    CAS  Google Scholar 

  77. Zou, S., Weaver, M.J.: Surface-enhanced Raman scattering on uniform transition-metal films: toward a versatile adsorbate vibrational strategy for solid-nonvacuum interfaces? Anal. Chem. 70, 2387–2395 (1998)

    CAS  Google Scholar 

  78. Yang, C., Zhang, C., Huo, Y., Jiang, S., Qiu, H., Xu, Y., Li, X., Man, B.: Shell-isolated graphene@Cu nanoparticles on graphene@Cu substrates for the application in SERS. Carbon. 98, 526–533 (2016)

    CAS  Google Scholar 

  79. Li, J.F., Huang, Y.F., Ding, Y., Yang, Z.L., Li, S.B., Zhou, X.S., Fan, F.R., Zhang, W., Zhou, Z.Y., Wu, D.Y., Ren, B., Wang, Z.L., Tian, Z.Q.: Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature. 464, 392–395 (2010)

    CAS  Google Scholar 

  80. Huang, Y.-F., Kooyman, P.J., Koper, M.T.M.: Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy. Nat. Commun. 7, 12440 (2016)

    CAS  Google Scholar 

  81. Hartman, T., Wondergem, C.S., Weckhuysen, B.M.: Practical guidelines for Shell-isolated nanoparticle-enhanced Raman spectroscopy of heterogeneous catalysts. ChemPhysChem. 19, 2461–2467 (2018)

    CAS  Google Scholar 

  82. Wang, Y.-H., Wei, J., Radjenovic, P., Tian, Z., Li, J.-F.: In situ analysis of surface catalytic reactions using SHINERS. Anal. Chem. 91(3), 1675–1685 (2019)

    Google Scholar 

  83. Lin, X.-D., Uzayisenga, V., Li, J.-F., Fang, P.-P., Wu, D.-Y., Ren, B., Tian, Z.-Q.: Synthesis of ultrathin and compact Au@MnO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). J. Raman Spectrosc. 43, 40–45 (2012)

    CAS  Google Scholar 

  84. Bockris, J.O.’.M., Reddy, A.K.N., Gamboa-Aldeco, M.E.: Modern Electrochemistry, 2nd edn. Plenum Press, New York (1998–2000)

    Google Scholar 

  85. Chen, D., Ding, D., Li, X., Waller, G.H., Xiong, X., El-Sayed, M.A., Liu, M.: Probing the charge storage mechanism of a pseudocapacitive MnO2 electrode using in operando Raman spectroscopy. Chem. Mater. 27, 6608–6619 (2015)

    CAS  Google Scholar 

  86. Hannauer, J., Scheers, J., Fullenwarth, J., Fraisse, B., Stievano, L., Johansson, P.: The quest for polysulfides in lithium-sulfur battery electrolytes: An operando confocal Raman spectroscopy study. ChemPhysChem. 16, 2755–2759 (2015)

    CAS  Google Scholar 

  87. Yeo, B.S., Klaus, S.L., Ross, P.N., Mathies, R.A., Bell, A.T.: Identification of hydroperoxy species as reaction intermediates in the electrochemical evolution of oxygen on gold. ChemPhysChem. 11, 1854–1857 (2010)

    CAS  Google Scholar 

  88. Kornienko, N., Heidary, N., Cibin, G., Reisner, E.: Catalysis by design: development of a bifunctional water splitting catalyst through an operando measurement directed optimization cycle. Chem. Sci. 9, 5322–5333 (2018)

    CAS  Google Scholar 

  89. Etienne, M., Dossot, M., Grausem, J., Herzog, G.: Combined Raman microspectrometer and shearforce regulated SECM for corrosion and self-healing analysis. Anal. Chem. 86, 11203–11210 (2014)

    CAS  Google Scholar 

  90. Clausmeyer, J., Nebel, M., Grützke, S., Kayran, Y.U., Schuhmann, W.: Local surface modifications investigated by combining scanning electrochemical microscopy and surface-enhanced Raman scattering. ChemPlusChem. 83, 414–417 (2018)

    CAS  Google Scholar 

  91. Pomfret, M.B., Owrutsky, J.C., Walker, R.A.: In situ studies of fuel oxidation in solid oxide fuel cells. Anal. Chem. 79, 2367–2372 (2007)

    CAS  Google Scholar 

  92. Li, X., Gewirth, A.A.: Oxygen electroreduction through a superoxide intermediate on bi-modified Au surfaces. J. Am. Chem. Soc. 127, 5252–5260 (2005)

    CAS  Google Scholar 

  93. Bohra, D., Ledezma-Yanez, I., Li, G., de Jong, W., Pidko, E., Smith, W.: Lateral adsorbate interactions inhibit HCOO while promoting CO selectivity for CO2 electrocatalysis on Ag. Angew. Chem. Int. Ed. (2018)

    Google Scholar 

  94. Chen, Y.X., Tian, Z.Q.: Dependence of surface enhanced Raman scattering of water on the hydrogen evolution reaction. Chem. Phys. Lett. 281, 379–383 (1997)

    CAS  Google Scholar 

  95. Bañares, M.A.: Operando methodology: combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions. Catal. Today. 100, 71–77 (2005)

    Google Scholar 

  96. Deng, Y., Yeo, B.S.: Characterization of electrocatalytic water splitting and CO2 reduction reactions using in situ/operando Raman spectroscopy. ACS Catal. 7, 7873–7889 (2017)

    CAS  Google Scholar 

  97. Deng, Y., Handoko, A.D., Du, Y., Xi, S., Yeo, B.S.: In situ Raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: identification of Cu III oxides as catalytically active species. ACS Catal. 6, 2473–2481 (2016)

    CAS  Google Scholar 

  98. Deng, Y., Ting, L.R.L., Neo, P.H.L., Zhang, Y.-J., Peterson, A.A., Yeo, B.S.: Operando Raman spectroscopy of amorphous molybdenum sulfide (MoSx) during the electrochemical hydrogen evolution reaction: identification of sulfur atoms as catalytically active sites for H+ reduction. ACS Catal. 6, 7790–7798 (2016)

    CAS  Google Scholar 

  99. James, O.O., Sauter, W., Schröder, U.: Towards selective electrochemical conversion of glycerol to 1,3-propanediol. RSC Adv. 8, 10818–10827 (2018)

    CAS  Google Scholar 

  100. Jiang, S., Klingan, K., Pasquini, C., Dau, H.: New aspects of operando Raman spectroscopy applied to electrochemical CO2 reduction on Cu foams. J. Chem. Phys. 150, 41718 (2019)

    Google Scholar 

  101. Barwe, S., Weidner, J., Cychy, S., Morales, D.M., Dieckhöfer, S., Hiltrop, D., Masa, J., Muhler, M., Schuhmann, W.: Electrocatalytic oxidation of 5-(Hydroxymethyl)furfural using high-surface-area nickel boride. Angew. Chem. Int. Ed. 57, 11460–11464 (2018)

    CAS  Google Scholar 

  102. Wiaderek, K.M., Borkiewicz, O.J., Castillo-Martínez, E., Robert, R., Pereira, N., Amatucci, G.G., Grey, C.P., Chupas, P.J., Chapman, K.W.: Comprehensive insights into the structural and chemical changes in mixed-anion FeOF electrodes by using operando PDF and NMR spectroscopy. J. Am. Chem. Soc. 135, 4070–4078 (2013)

    CAS  Google Scholar 

  103. Li, X., Yang, X., Zhang, J., Huang, Y., Liu, B.: In situ/operando techniques for characterization of single-atom catalysts. ACS Catal. 9, 2521–2531 (2019)

    CAS  Google Scholar 

  104. Wu, D.-Y., Li, J.-F., Ren, B., Tian, Z.-Q.: Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev. 37, 1025–1041 (2008)

    CAS  Google Scholar 

  105. Anantharaj, S., Ede, S.R., Sakthikumar, K., Karthick, K., Mishra, S., Kundu, S.: Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review. ACS Catal. 6, 8069–8097 (2016)

    CAS  Google Scholar 

  106. Wang, J., Cui, W., Liu, Q., Xing, Z., Asiri, A.M., Sun, X.: Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28, 215–230 (2016)

    CAS  Google Scholar 

  107. Tahir, M., Pan, L., Idrees, F., Zhang, X., Wang, L., Zou, J.-J., Wang, Z.L.: Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy. 37, 136–157 (2017)

    CAS  Google Scholar 

  108. Andronescu, C., Barwe, S., Ventosa, E., Masa, J., Vasile, E., Konkena, B., Möller, S., Schuhmann, W.: Powder catalyst fixation for post-electrolysis structural characterization of NiFe layered double hydroxide based oxygen evolution reaction electrocatalysts. Angew. Chem. Int. Ed. 56, 11258–11262 (2017)

    CAS  Google Scholar 

  109. Lu, X., Zhao, C.: Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 6, 6616 (2015)

    CAS  Google Scholar 

  110. Louie, M.W., Bell, A.T.: An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 135, 12329–12337 (2013)

    CAS  Google Scholar 

  111. Steimecke, M., Seiffarth, G., Bron, M.: In situ characterization of Ni and Ni/Fe thin film electrodes for oxygen evolution in alkaline media by a Raman-coupled scanning electrochemical microscope setup. Anal. Chem. 89, 10679–10686 (2017)

    CAS  Google Scholar 

  112. Lu, Z., Xu, W., Zhu, W., Yang, Q., Lei, X., Liu, J., Li, Y., Sun, X., Duan, X.: Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 50, 6479–6482 (2014)

    CAS  Google Scholar 

  113. Yeo, B.S., Bell, A.T.: In situ Raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen. J. Phys. Chem. C. 116, 8394–8400 (2012)

    CAS  Google Scholar 

  114. Yeo, B.S., Bell, A.T.: Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 133, 5587–5593 (2011)

    CAS  Google Scholar 

  115. Rabe, M., Toparli, C., Chen, Y.-H., Kasian, O., Mayrhofer, K.J.J., Erbe, A.: Alkaline manganese electrochemistry studied by in situ and operando spectroscopic methods – metal dissolution, oxide formation and oxygen evolution. Phys. Chem. Chem. Phys. 21, 10457 (2019)

    CAS  Google Scholar 

  116. Diaz-Morales, O., Calle-Vallejo, F., de Munck, C., Koper, M.T.M.: Electrochemical water splitting by gold: evidence for an oxide decomposition mechanism. Chem. Sci. 4, 2334 (2013)

    CAS  Google Scholar 

  117. Faber, M.S., Dziedzic, R., Lukowski, M.A., Kaiser, N.S., Ding, Q., Jin, S.: High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 136, 10053–10061 (2014)

    CAS  Google Scholar 

  118. Hinnemann, B., Moses, P.G., Bonde, J., Jørgensen, K.P., Nielsen, J.H., Horch, S., Chorkendorff, I., Nørskov, J.K.: Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005)

    CAS  Google Scholar 

  119. Jaramillo, T.F., Jørgensen, K.P., Bonde, J., Nielsen, J.H., Horch, S., Chorkendorff, I.: Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science. 317, 100–102 (2007)

    CAS  Google Scholar 

  120. Gao, M.-R., Liang, J.-X., Zheng, Y.-R., Xu, Y.-F., Jiang, J., Gao, Q., Li, J., Yu, S.-H.: An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 6, 5982 (2015)

    CAS  Google Scholar 

  121. Benck, J.D., Chen, Z., Kuritzky, L.Y., Forman, A.J., Jaramillo, T.F.: Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal. 2, 1916–1923 (2012)

    CAS  Google Scholar 

  122. Benck, J.D., Hellstern, T.R., Kibsgaard, J., Chakthranont, P., Jaramillo, T.F.: Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 4, 3957–3971 (2014)

    CAS  Google Scholar 

  123. Kornienko, N., Resasco, J., Becknell, N., Jiang, C.-M., Liu, Y.-S., Nie, K., Sun, X., Guo, J., Leone, S.R., Yang, P.: Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst. J. Am. Chem. Soc. 137, 7448–7455 (2015)

    CAS  Google Scholar 

  124. Tran, P.D., Tran, T.V., Orio, M., Torelli, S., Truong, Q.D., Nayuki, K., Sasaki, Y., Chiam, S.Y., Yi, R., Honma, I., Barber, J., Artero, V.: Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide. Nat. Mater. 15, 640–646 (2016)

    CAS  Google Scholar 

  125. Zhu, Y., Chen, H.-C., Hsu, C.-S., Lin, T.-S., Chang, C.-J., Chang, S.-C., Tsai, L.-D., Chen, H.M.: Operando unraveling of the structural and chemical stability of P-substituted CoSe2 electrocatalysts toward Hhydrogen and oxygen evolution reactions in alkaline alectrolyte. ACS Energy Lett. 4, 987–994 (2019)

    CAS  Google Scholar 

  126. Bing, Y., Liu, H., Zhang, L., Ghosh, D., Zhang, J.: Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 39, 2184–2202 (2010)

    CAS  Google Scholar 

  127. Ge, X., Sumboja, A., Wuu, D., An, T., Li, B., Goh, F.W.T., Hor, T.S.A., Zong, Y., Liu, Z.: Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts. ACS Catal. 5, 4643–4667 (2015)

    CAS  Google Scholar 

  128. Jiao, Y., Zheng, Y., Jaroniec, M., Qiao, S.Z.: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015)

    CAS  Google Scholar 

  129. Moussallem, I., Jörissen, J., Kunz, U., Pinnow, S., Turek, T.: Chlor-alkali electrolysis with oxygen depolarized cathodes: history, present status and future prospects. J. Appl. Electrochem. 38, 1177–1194 (2008)

    CAS  Google Scholar 

  130. Cheng, F., Chen, J.: Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41, 2172–2192 (2012)

    CAS  Google Scholar 

  131. Kulkarni, A., Siahrostami, S., Patel, A., Nørskov, J.K.: Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118, 2302–2312 (2018)

    CAS  Google Scholar 

  132. Nørskov, J.K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J.R., Bligaard, T., Jónsson, H.: Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B. 108, 17886–17892 (2004)

    Google Scholar 

  133. Dong, J.-C., Zhang, X.-G., Briega-Martos, V., Jin, X., Yang, J., Chen, S., Yang, Z.-L., Wu, D.-Y., Feliu, J.M., Williams, C.T., Tian, Z.-Q., Li, J.-F.: In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy. 4, 60–67 (2019)

    CAS  Google Scholar 

  134. Radjenovic, P.M., Hardwick, L.J.: Time-resolved SERS study of the oxygen reduction reaction in ionic liquid electrolytes for non-aqueous lithium-oxygen cells. Faraday Discuss. 206, 379–392 (2018)

    CAS  Google Scholar 

  135. Hori, Y., Kikuchi, K., Suzuki, S.: Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem. Lett. 14, 1695–1698 (1985)

    Google Scholar 

  136. Jitaru, M., Lowy, D.A., Toma, M., Toma, B.C., Oniciu, L.: Electrochemical reduction of carbon dioxide on flat metallic electrodes. J. Appl. Electrochem. 27, 875–889 (1997)

    CAS  Google Scholar 

  137. Kuhl, K.P., Cave, E.R., Abram, D.N., Jaramillo, T.F.: New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050 (2012)

    CAS  Google Scholar 

  138. Kortlever, R., Shen, J., Schouten, K.J.P., Calle-Vallejo, F., Koper, M.T.M.: Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015)

    CAS  Google Scholar 

  139. Dunwell, M., Lu, Q., Heyes, J.M., Rosen, J., Chen, J.G., Yan, Y., Jiao, F., Xu, B.: The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. J. Am. Chem. Soc. 139, 3774–3783 (2017)

    CAS  Google Scholar 

  140. Wuttig, A., Yaguchi, M., Motobayashi, K., Osawa, M., Surendranath, Y.: Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity. Proc. Natl. Acad. Sci. U. S. A. 113, E4585–E4593 (2016)

    CAS  Google Scholar 

  141. Kim, C., Jeon, H.S., Eom, T., Jee, M.S., Kim, H., Friend, C.M., Min, B.K., Hwang, Y.J.: Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J. Am. Chem. Soc. 137, 13844–13850 (2015)

    CAS  Google Scholar 

  142. Hatsukade, T., Kuhl, K.P., Cave, E.R., Abram, D.N., Jaramillo, T.F.: Insights into the electrocatalytic reduction of CO2 on metallic silver surfaces. Phys. Chem. Chem. Phys. 16, 13814–13819 (2014)

    CAS  Google Scholar 

  143. Schmitt, K.G., Gewirth, A.A.: In situ surface-enhanced Raman spectroscopy of the electrochemical reduction of carbon dioxide on silver with 3,5-diamino-1,2,4-triazole. J. Phys. Chem. C. 118, 17567–17576 (2014)

    CAS  Google Scholar 

  144. Dick, L.A., McFarland, A.D., Haynes, C.L., van Duyne, R.P.: Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss. J. Phys. Chem. B. 106, 853–860 (2002)

    CAS  Google Scholar 

  145. Cross, N.A., Pemberton, J.E.: Surface enhanced Raman scattering of pyridine on Ag electrodes formed with controlled-rate oxidation-reduction cycles. J. Electroanal. Chem. Interfacial Electrochem. 217, 93–100 (1987)

    CAS  Google Scholar 

  146. Zhang, W., Schmid, T., Yeo, B.-S., Zenobi, R.: Near-field heating, annealing, and signal loss in tip-enhanced Raman spectroscopy. J. Phys. Chem. C. 112, 2104–2108 (2008)

    CAS  Google Scholar 

  147. Lin, K.-Q., Yi, J., Zhong, J.-H., Hu, S., Liu, B.-J., Liu, J.-Y., Zong, C., Lei, Z.-C., Wang, X., Aizpurua, J., Esteban, R., Ren, B.: Plasmonic photoluminescence for recovering native chemical information from surface-enhanced Raman scattering. Nat. Commun. 8, 14891 (2017)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Schuhmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schuhmann, W., Öhl, D., Morales, D.M. (2023). Operando Electrochemical Raman Spectroscopy. In: Wachs, I.E., Bañares, M.A. (eds) Springer Handbook of Advanced Catalyst Characterization. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-031-07125-6_9

Download citation

Publish with us

Policies and ethics