Skip to main content

The Added Value of EEG-fMRI in Imaging Neuroscience

  • Chapter
  • First Online:
EEG - fMRI

Abstract

The main objective of functional neuroimaging is to detect and characterize in space and time neurophysiologically relevant changes of brain states. Functional MRI (fMRI) and electro-encephalography (EEG) assume that a given brain state can be decoded from the precise anatomical localization and the detailed temporal evolution of neuro-electrical brain signals, respectively. Mapping brain states with fMRI at a spatial resolution in the millimeter range allows imaging neuroscientists to test diverse neurophysiological and neuropathological hypotheses in the normal and clinical populations. Simultaneously recorded EEG offers the possibility to greatly enrich topological results by tracking subjects’ state-representative patterns over time at the millisecond temporal scale.

The main purpose of this chapter is to illustrate how the imaging neuroscientist can integrate detailed temporal information provided by simultaneously recorded EEG signals into fMRI spatio-temporal modeling. We discuss the problem of optimizing a common source space for fMRI and EEG signal projection through the use of anatomical and functional MRI models and EEG distributed inverse models, thereby gathering a fully integrated framework for the comparative analysis of simultaneously acquired EEG-fMRI data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu R, Leal A, Figueiredo P (2018a) EEG-informed fMRI: a review of data analysis methods. Front Hum Neurosci 12:29

    Article  Google Scholar 

  • Abreu R, Leal A, Lopes da Silva F, Figueiredo P (2018b) EEG synchronization measures predict epilepsy-related BOLD-fMRI fluctuations better than commonly used univariate metrics. Clin Neurophysiol 129(3):618–635

    Article  Google Scholar 

  • Acar ZA, Makeig S, Worrell G (2008) Head modeling and cortical source localizationin epilepsy. Conf Proc IEEE Eng Med Biol Soc 2008:3763–3766

    Google Scholar 

  • Babiloni F, Babiloni C, Carducci F, Romani GL, Rossini PM, Angelone LM, Cincotti F (2003) Multimodal integration of high-resolution EEG and functional magnetic resonance imaging data: a simulation study. Neuroimage 19(1):1–15

    Article  CAS  Google Scholar 

  • Baillet S, Mosher JC, Leahy RM (2001) Electromagnetic brain mapping. IEEE Signal Process Mag 18(6):14–30

    Article  Google Scholar 

  • Berg P, Scherg M (1994) A fast method for forward computation of multiple-shell spherical head models. Electroencephalogr Clin Neurophysiol 90:58–64

    Article  CAS  Google Scholar 

  • Biazoli CE Jr, Sturzbecher M, White TP, Dos Santos Onias HH, Andrade KC, deAraujo DB, Sato JR (2013) Application of partial directed coherence to the analysis of resting-state EEG-fMRI data. Brain Connect 3(6):563–568

    Article  Google Scholar 

  • Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16(13):4207–4221

    Article  CAS  Google Scholar 

  • Brookes MJ, Gibson AM, Hall SD, Furlong PL, Barnes GR, Hillebrand A, Singh KD, Holliday IE, Francis ST, Morris PG (2005) GLM-beamformer method demonstrates stationary field, alpha ERD and gamma ERS co-localisation with fMRI BOLD response in visual cortex. Neuroimage 26:302–308

    Article  Google Scholar 

  • Dale AM, Sereno MI (1993) Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5:162–176

    Article  CAS  Google Scholar 

  • Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage 9:179–194

    Article  CAS  Google Scholar 

  • Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E (2000) Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26:55–67

    Article  CAS  Google Scholar 

  • Darvas F, Pantazis D, Kucukaltun-Yildirim E, Leahy RM (2004) Mapping human brain function with MEG and EEG: methods and validation. Neuroimage 23:S289–S299

    Article  Google Scholar 

  • Edelman GM, Tononi G (2000) A universe of consciounsness. Basic Books, New York

    Google Scholar 

  • Eichele T, Specht K, Moosmann M, Jongsma ML, Quiroga RQ, Nordby H, Hugdahl K (2005) Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI. Proc Natl Acad Sci U S A 102(49):17798–17803

    Article  CAS  Google Scholar 

  • Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2(10):704–716

    Article  CAS  Google Scholar 

  • Esposito F, Bertolino A, Scarabino T, Latorre V, Blasi G, Popolizio T, Tedeschi G, Cirillo S, Goebel R, Di Salle F (2006) Independent component model of the default-mode brain function: assessing the impact of active thinking. Brain Res Bull 70(4–6):263–269

    Article  Google Scholar 

  • Esposito F, Singer N, Podlipsky I, Fried I, Hendler T, Goebel R (2013) Cortex-based inter-subject analysis of iEEG and fMRI data sets: application to sustained task-related BOLD and gamma responses. Neuroimage 66:457–468

    Article  Google Scholar 

  • Feige B, Scheffler K, Esposito F, Di Salle F, Hennig J, Seifritz E (2005) Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation. J Neurophysiol 93(5):2864–2872

    Article  Google Scholar 

  • Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, Frackowiak RS, Turner R (1995) Analysis of fMRI time-series revisited. Neuroimage 2(1):45–53

    Article  CAS  Google Scholar 

  • Frolov AA, Mokienko O, Lyukmanov R, Biryukova E, Kotov S, Turbina L, Nadareyshvily G, Bushkova Y (2017) Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton: a randomized controlled multicenter trial. Front Neurosci 11:400

    Article  Google Scholar 

  • Goebel R (2012) BrainVoyager—past, present, future. Neuroimage 62(2):748–756

    Article  Google Scholar 

  • Grave de Peralta R, Murray MM, Michel CM, Martuzzi R, Gonzalez Andino S (2004) Electrical neuroimaging based on biophysical constraints. Neuroimage 21:527–539

    Article  Google Scholar 

  • Hamalainen M, Ilmoniemi RJ (1984) Interpreting measured magnetic fields of the brain: estimates of current distributions. Technical report TKK-F-A559. Helsinki University of Technology

    Google Scholar 

  • Hamalainen M, Hari R, Ilmoniemi R, Knuutila J, Lounasmaa O (1993) Magnetoencephalography—theory, instrumentation, and application to non-invasive studies of the working human brain. Rev Mod Phys 65:413–497

    Article  CAS  Google Scholar 

  • Hawsawi HB, Carmichael DW, Louis L (2017) Safety of simultaneous scalp or intracranial EEG during MRI: a review. Front Phys 5:42

    Article  Google Scholar 

  • Hyvarinen A, Karhunen J, Oya E (2001) Independent component analysis. John Wiley & Sons, New York

    Book  Google Scholar 

  • Jeffs B, Leahy R, Singh M (1987) An evaluation of methods for neuromagnetic image reconstruction. IEEE Trans Biomed Eng 34:713–723

    Article  CAS  Google Scholar 

  • Kadipasaoglu CM, Baboyan VG, Conner CR, Chen G, Saad ZS, Tandon N (2014) Surface-based mixed effects multilevel analysis of grouped human electrocorticography. Neuroimage 101:215–224

    Article  CAS  Google Scholar 

  • Kayser J, Tenke CE (2003) Optimizing PCA methodology for ERP component identification and measurement: theoretical rationale and empirical evaluation. Clin Neurophysiol 114(12):2307–2325

    Article  Google Scholar 

  • Kemper VG, De Martino F, Emmerling TC, Yacoub E, Goebel R (2018) High resolution data analysis strategies for mesoscale human functional MRI at 7 and 9.4T. Neuroimage 164:48–58

    Article  Google Scholar 

  • Kiebel SJ, Goebel R, Friston KJ (2000) Anatomically informed basis functions. Neuroimage 11(6):656–667

    Article  CAS  Google Scholar 

  • Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, Kleinschmidt A (2003) Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci U S A 100(19):11053–11058

    Article  CAS  Google Scholar 

  • Lawson CL, Hanson RJ (1974) Solving least squares problems. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Leahy RM, Mosher JC, Philips JW (1996) A comparative study of minimum norm inverse methods for MEG imaging. In: Proceedings of the 10th international conference of biomagnetism

    Google Scholar 

  • Lei X, Valdes-Sosa PA, Yao D (2012) EEG/fMRI fusion based on independent component analysis: integration of data-driven and model-driven methods. J Integr Neurosci 11:313–337

    Article  Google Scholar 

  • Lin FH, Witzel T, Hämäläinen MS, Dale AM, Belliveau JW, Stufflebeam SM (2004) Spectral spatiotemporal imaging of cortical oscillations and interactions in the human brain. Neuroimage 23:582–595

    Article  Google Scholar 

  • Lin FH, Witzel T, Ahlfors SP, Stufflebeam SM, Belliveau JW, Hämäläinen MS (2006) Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. Neuroimage 31:160–171

    Article  Google Scholar 

  • Liu AK, Belliveau JW, Dale AM (1998) Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. Proc Natl Acad Sci U S A 95(15):8945–8950

    Article  CAS  Google Scholar 

  • Liu Z, Kecman F, He B (2006) Effects of fMRI-EEG mismatches in cortical current density estimation integrating fMRI and EEG: a simulation study. Clin Neurophysiol 117(7):1610–1622

    Article  Google Scholar 

  • Maggioni E, Zucca C, Reni G, Cerutti S, Triulzi FM, Bianchi AM, Arrigoni F (2016) Investigation of the electrophysiological correlates of negative BOLD response during intermittent photic stimulation: an EEG-fMRI study. Hum Brain Mapp 37(6):2247–2262

    Article  Google Scholar 

  • Makeig S, Westerfield M, Jung TP, Enghoff S, Townsend J, Courchesne E, Sejnowski TJ (2002) Dynamic brain sources of visual evoked responses. Science 295(5555):690–694

    Article  CAS  Google Scholar 

  • Meltzer JA, Negishi M, Mayes LC, Constable RT (2007a) Individual differences in EEG theta and alpha dynamics during working memory correlate with fMRI responses across subjects. Clin Neurophysiol 118(11):2419–2436

    Article  Google Scholar 

  • Meltzer JA, Zaveri HP, Goncharova II, Distasio MM, Papademetris X, Spencer SS, Spencer DD, Constable RT (2007b) Effects of working memory load on oscillatory power in human intracranial EEG. Cereb Cortex 18(8):1843–1855

    Article  Google Scholar 

  • Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, Grave de Peralta R (2004) EEG source imaging. Clin Neurophysiol 115(10):2195–2222

    Article  Google Scholar 

  • Mizuhara H, Wang LQ, Kobayashi K, Yamaguchi Y (2005) Long-range EEG phase synchronization during an arithmetic task indexes a coherent cortical network simultaneously measured by fMRI. Neuroimage 27(3):553–563

    Article  Google Scholar 

  • Mosher JC, Leahy RM (1998) Recursive MUSIC: a framework for EEG and MEG source localization. IEEE Trans Biomed Eng 45(11):1342–1355

    Article  CAS  Google Scholar 

  • Mosher JC, Leahy R, Lewis P (1999) EEG and MEG: forward solutions for inverse methods. IEEE Trans Biomed Eng 46(3):245–259

    Article  CAS  Google Scholar 

  • Mulert C, Menzinger E, Leicht G, Pogarell O, Hegerl U (2005) Evidence for a close relationship between conscious effort and anterior cingulate cortex activity. Int J Psychophysiol 56:65–80

    Article  Google Scholar 

  • Nunez PL, Srinivasan R (2006) Electric fields of the brain. The neurophysics of EEG, 2nd edn. Oxford University Press, Oxford

    Book  Google Scholar 

  • Ostwald D, Porcaro C, Bagshaw AP (2011) Voxel-wise information theoretic EEG-fMRI feature integration. Neuroimage 55(3):1270–1286

    Article  Google Scholar 

  • Pascual-Marqui R (2002) Standardized low resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24D:5–12

    Google Scholar 

  • Pascual-Marqui R, Michel C, Lehman D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65

    Article  CAS  Google Scholar 

  • Riecke L, Esposito F, Bonte M, Formisano E (2009) Hearing illusory sounds in noise: the timing of sensory-perceptual transformations in auditory cortex. Neuron 64(4):550–561

    Article  CAS  Google Scholar 

  • Riecke L, Vanbussel M, Hausfeld L, Başkent D, Formisano E, Esposito F (2012) Hearing an illusory vowel in noise: suppression of auditory cortical activity. J Neurosci 32(23):8024–8034

    Article  CAS  Google Scholar 

  • Rosa MJ, Daunizeau J, Friston KJ (2010) EEG-fMRI integration: a critical review of biophysical modeling and data analysis approaches. J Integr Neurosci 9:453–476

    Article  CAS  Google Scholar 

  • Sarvas J (1985) Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol 32:11–22

    Article  Google Scholar 

  • Scheeringa R, Fries P, Petersson KM, Oostenveld R, Grothe I, Norris DG, Hagoort P, Bastiaansen MC (2011) Neuronal dynamics underlying high- and low-frequency EEG oscillations contribute independently to the human BOLD signal. Neuron 69(3):572–583

    Article  CAS  Google Scholar 

  • Scherg M (1990) Fundamentals of dipole source potential analysis. Adv Audiol 6:40–69

    Google Scholar 

  • Singer N, Podlipsky I, Esposito F, Okon-Singer H, Andelman F, Kipervasser S, Neufeld MY, Goebel R, Fried I, Hendler T (2014) Distinct iEEG activity patterns in temporal-limbic and prefrontal sites induced by emotional intentionality. Cortex 60:121–138

    Article  Google Scholar 

  • Tikhonov A, Arsenin V (1977) Solutions to ill-posed problems. Wiley, New York

    Google Scholar 

  • van Veen B, van Drongelen W, Yuchtman M, Suzuki A (1997) Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 44(9):867–880

    Article  Google Scholar 

  • Walz JM, Goldman RI, Carapezza M, Muraskin J, Brown TR, Sajda P (2014) Simultaneous EEG-fMRI reveals a temporal cascade of task-related and default-mode activations during a simple target detection task. Neuroimage 102:229–239

    Article  Google Scholar 

  • Wibral M, Turi G, Linden DE, Kaiser J, Bledowski C (2008) Decomposition of working memory-related scalp ERPs: crossvalidation of fMRI-constrained source analysis and ICA. Int J Psychophysiol 67(3):200–211

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Esposito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goebel, R., Esposito, F. (2022). The Added Value of EEG-fMRI in Imaging Neuroscience. In: Mulert, C., Lemieux, L. (eds) EEG - fMRI. Springer, Cham. https://doi.org/10.1007/978-3-031-07121-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07121-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07120-1

  • Online ISBN: 978-3-031-07121-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics