Skip to main content

Locally Measured Neuronal Correlates of Functional MRI Signals

  • Chapter
  • First Online:
EEG - fMRI
  • 1259 Accesses

Abstract

Functional brain imaging techniques, such as functional MRI (fMRI), are commonly used to estimate local changes in neuronal activity in response to stimuli or experimental tasks. Compared to all other non-invasive functional imaging methods, fMRI has the best spatial specificity relative to the site of changes in neuronal activity. However, fMRI signals are not direct measures of neuronal activity such as action potentials or synaptic activation. Instead, fMRI measures local metabolic and blood-based (hemodynamic) responses, which are thought to be linked to local changes in neuronal activity via neurovascular coupling. Here we review theoretical and empirical insights into the link between neuronal activity and fMRI signals as well as the physiological processes that give rise to neurovascular coupling. What exactly links neural activity to the fMRI signal remains a topic of ongoing research. However, current evidence shows that graded increases in neuronal activity evoke a monotonous increase in metabolic and hemodynamic activity. The majority of studies indicate that for stimuli that are several seconds long or longer, this relationship between local neural activity and the fMRI response is approximately linear. In line with this observation, negative BOLD responses have been shown to be associated with decreases in neuronal activity. Non-task-related (i.e., ongoing or spontaneous) changes in fMRI signal have been shown to reflect both changes in locally measured neuronal activity as well as non-neuronal components, such as respiration. Under most experimental conditions, the cortical fMRI response appears to reflect both local synaptic activity and spiking output. However, in cases where synaptic and spiking activities are dissociated, the fMRI response seems to reflect local synaptic activity more closely than local spike rate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273:1868–1871

    Article  CAS  Google Scholar 

  • Arthurs OJ, Boniface SJ (2003) What aspect of the fMRI BOLD signal best reflects the underlying electrophysiology in human somatosensory cortex? Clin Neurophysiol 114:1203–1209

    Article  CAS  Google Scholar 

  • Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397

    Article  CAS  Google Scholar 

  • Bannister AP (2005) Inter- and intra-laminar connections of pyramidal cells in the neocortex. Neurosci Res 53:95–103

    Article  Google Scholar 

  • Bastos AM, Loonis R, Kornblith S, Lundqvist M, Miller EK (2018) Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory. Proc Natl Acad Sci U S A 115(5):1117–1122

    Article  CAS  Google Scholar 

  • Bentley WJ, Li JM, Snyder AZ, Raichle ME, Snyder LH (2016) Oxygen level and LFP in task-positive and task-negative areas: bridging BOLD fMRI and electrophysiology. Cereb Cortex 26(1):346–357

    Article  Google Scholar 

  • Billings-Gagliardi S, Chan-Palay V, Palay SL (1974) A review of lamination in area 17 of the visual cortex Macaca mulatta. J Neurocytol 3:619–629

    Article  CAS  Google Scholar 

  • Birn RM, Diamond JB, Smith MA, Bandettini PA (2006) Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage 31:1536–1548

    Article  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    Article  CAS  Google Scholar 

  • Bode-Greuel KM, Singer W, Aldenhoff JB (1987) A current source density analysis of field potentials evoked in slices of visual cortex. Exp Brain Res 69:213–219

    Article  CAS  Google Scholar 

  • Bollimunta A, Chen Y, Schroeder CE, Ding M (2008) Neuronal mechanisms of cortical alpha oscillations in awake-behaving macaques. J Neurosci. 28:9976–9988

    Article  CAS  Google Scholar 

  • Boorman L, Kennerley AJ, Johnston D, Jones M, Zheng Y, Redgrave P, Berwick J (2010) Negative blood oxygen level dependence in the rat: a model for investigating the role of suppression in neurovascular coupling. J Neurosci 30:4285–4294

    Article  CAS  Google Scholar 

  • Bortel A, Pilgram R, Yao Z-S, Shmuel A (2020) Dexmedetomitine—commonly used in functional imaging studies—increases susceptibility to seizures in rats but not in wild type mice. Front Neurosci 14:832. https://doi.org/10.3389/fnins.2020.00832

    Article  Google Scholar 

  • Braitenberg V, Schuz A (1991) Anatomy of the cortex. Springer, Berlin

    Book  Google Scholar 

  • Brinker G, Bock C, Busch E, Krep H, Hossmann KA, Hoehn-Berlage M (1999) Simultaneous recording of evoked potentials and T2*-weighted MR images during somatosensory stimulation of rat. Magn Reson Med 41:469–473

    Article  CAS  Google Scholar 

  • Buffalo EA, Fries P, Landman R, Buschman TJ, Desimone R (2011) Laminar differences in gamma and alpha coherence in the ventral stream. Proc Natl Acad Sci U S A 108:11262–11267

    Article  CAS  Google Scholar 

  • Buxton RB, Uludag K, Dubowitz DJ, Liu TT (2004) Modeling the hemodynamic response to brain activation. Neuroimage 23:S220–S233

    Article  Google Scholar 

  • Chaimow D, Yacoub E, UÄŸurbil K, Shmuel A (2018) Spatial specificity of the functional MRI blood oxygenation response relative to neuronal activity. Neuroimage 164:32–47

    Article  Google Scholar 

  • Cohen LB, De Weer P (1977) Structural and metabolic processes directly related to action potential propagation. In: Brookhart JM, Mountcastle VB (eds) Handbook of physiology: the nervous system. American Physiological Society, Bethesda, pp 137–159

    Google Scholar 

  • Cox MA, Dougherty K, Adams GK, Reavis EA, Westerberg JA, Moore BS, Leopold DA, Maier A (2019) Spiking suppression precedes cued attentional enhancement of neural responses in primary visual cortex. Cereb Cortex 29(1):77–90

    Article  Google Scholar 

  • DeFelipe J, Alonso-Nanclares L, Arellano JI (2002) Microstructure of the neocortex: comparative aspects. J Neurocytol 31:299–316

    Article  Google Scholar 

  • Devor A, Dunn AK, Andermann ML, Ulbert I, Boas DA, Dale AM (2003) Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex. Neuron 39:353–359

    Article  CAS  Google Scholar 

  • Devor A, Tian P, Nishimura N, Teng IC, Hillman EMC, Narayanan SN, Ulbert I, Boas DA, Kleinfeld D, Dale AM (2007) Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal. J Neurosci 27:4452–4459

    Article  CAS  Google Scholar 

  • Dougherty K, Cox MA, Ninomiya T, Leopold DA, Maier A (2017) Ongoing alpha activity in V1 regulates visually driven spiking responses. Cereb Cortex 27(2):1113–1124

    Article  Google Scholar 

  • Douglas RJ, Martin KAC (2004) Neuronal circuits of the neocortex. Annu Rev Neurosci 27:419–451

    Article  CAS  Google Scholar 

  • Douglas RJ, Martin KAC, Whitteridge D (1989) A canonical microcircuit for neocortex. Neural Comput 1:480–488

    Article  Google Scholar 

  • Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7:181–192

    Article  CAS  Google Scholar 

  • Engel TA, Steinmetz NA, Gieselmann MA, Thiele A, Moore T, Boahen K (2016) Selective modulation of cortical state during spatial attention. Science 354(6316):1140–1144

    Article  CAS  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  CAS  Google Scholar 

  • Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood-flow and oxidative-metabolism during somatosensory stimulation in human-subjects. Proc Natl Acad Sci U S A 83:1140–1144

    Article  CAS  Google Scholar 

  • Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711

    Article  CAS  Google Scholar 

  • Franceschini MA, Radhakrishnan H, Thakur K, Wu W, Ruvinskaya S, Carp S, Boas DA (2010) The effect of different anesthetics on neurovascular coupling. Neuroimage 51:1367–1377

    Article  Google Scholar 

  • Freeman WJ (1975) Mass action in the nervous system. Academic, New York

    Google Scholar 

  • Goense JBM, Logothetis NK (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18:631–640

    Article  CAS  Google Scholar 

  • Goense J, Bohraus Y, Logothetis NK (2016) fMRI at high spatial resolution: implications for BOLD-models. Front Comput Neurosci 10:66

    Article  Google Scholar 

  • Handwerker DA, Bandettini PA (2011) Hemodynamic signals not predicted? Not so: a comment on Sirotin and Das (2009). Neuroimage 55(4):1409–1412

    Article  Google Scholar 

  • Hansen BJ, Dragoi V (2011) Adaptation-induced synchronization in laminar cortical circuits. Proc Natl Acad Sci U S A 108:10720–10725

    Article  CAS  Google Scholar 

  • Harel N, Lee SP, Nagaoka T, Kim DS, Kim SG (2002) Origin of negative blood oxygenation level-dependent fMRI signals. J Cereb Blood Flow Metab 22:908–917

    Article  Google Scholar 

  • Haug H (1987) Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). Am J Anat 180:126–142

    Article  CAS  Google Scholar 

  • Heeger DJ, Huk AC, Geisler WS, Albrecht DG (2000) Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? Nat Neurosci 3:631–633

    Article  CAS  Google Scholar 

  • Hembrook-Short JR, Mock VL, Briggs F (2017) Attentional modulation of neuronal activity depends on neuronal feature selectivity. Curr Biol 27(13):1878–1887.e5

    Article  CAS  Google Scholar 

  • Herculano-Houzel S, Collins CE, Wong P, Kaas JH, Lent R (2008) The basic nonuniformity of the cerebral cortex. Proc Natl Acad Sci U S A 105:12593–12598

    Article  CAS  Google Scholar 

  • Hoffmeyer HW, Enager P, Thomsen KJ, Lauritzen MJ (2007) Nonlinear neurovascular coupling in rat sensory cortex by activation of transcallosal fibers. J Cereb Blood Flow Metab 27:575–585

    Google Scholar 

  • Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB (1999) Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc Natl Acad Sci U S A 96:9403–9408

    Article  CAS  Google Scholar 

  • Horton JC, Adams DL (2005) The cortical column: a structure without a function. Philos Trans R Soc Lond B Biol Sci 360:837–862

    Article  Google Scholar 

  • Hubel DH, Wiesel TN (1974) Uniformity of monkey striate cortex: a parallel relationship between field size, scatter, and magnification factor. J Comp Neurol 158:295–305

    Article  CAS  Google Scholar 

  • Huber L, Handwerker DA, Jangraw DC, Chen G, Hall A, Stüber C, Gonzalez-Castillo J, Ivanov D, Marrett S, Guidi M, Goense J, Poser BA, Bandettini PA (2017) High-resolution CBV-fMRI allows mapping of laminar activity and connectivity of cortical input and output in human M1. Neuron 96:1253–1263

    Article  CAS  Google Scholar 

  • Hutchison RM, Hashemi N, Gati JS, Menon RS, Everling S (2015) Electrophysiological signatures of spontaneous BOLD fluctuations in macaque prefrontal cortex. Neuroimage. 113:257–267

    Article  Google Scholar 

  • Iordanova B, Vazquez AL, Poplawsky AJ, Fukuda M, Kim SG (2015) Neural and hemodynamic responses to optogenetic and sensory stimulation in the rat somatosensory cortex. J Cereb Blood Flow Metab 6:922–932

    Article  Google Scholar 

  • Jones M, Hewson-Stoate N, Martindale J, Redgrave P, Mayhew J (2004) Nonlinear coupling of neural activity and CBF in rodent barrel cortex. Neuroimage 22:956–965

    Article  Google Scholar 

  • Juergens E, Guettler A, Eckhorn R (1999) Visual stimulation elicits locked and induced gamma oscillations in monkey intracortical- and EEG-potentials, but not in human EEG. Exp Brain Res 129:247–259

    Article  CAS  Google Scholar 

  • Kannurpatti SS, Biswal BB (2004) Negative functional response to sensory stimulation and its origins. J Cereb Blood Flow Metab 24:703–712

    Article  Google Scholar 

  • Klein C, Evrard HC, Shapcott KA, Haverkamp S, Logothetis NK, Schmid MC (2016) Cell-targeted optogenetics and electrical microstimulation reveal the primate koniocellular projection to supra-granular visual cortex. Neuron 90(1):143–151

    Article  CAS  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng HM, Brady TJ, Rosen BR (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89:5675–5679

    Article  CAS  Google Scholar 

  • Lauritzen M (2005) Reading vascular changes in brain imaging: is dendritic calcium the key? Nat Rev Neurosci 6:77–85

    Article  CAS  Google Scholar 

  • Lawrence SJD, Formisano E, Muckli L, de Lange FP (2017) Laminar fMRI: applications for cognitive neuroscience. Neuroimage 197:785–791. S1053-8119(17)30572-4

    Article  Google Scholar 

  • Leopold DA, Murayama Y, Logothetis NK (2003) Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. Cereb Cortex 13:423–433

    Article  Google Scholar 

  • Logothetis NK (2002) The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B 357:1003–1037

    Article  Google Scholar 

  • Logothetis NK (2010) Neurovascular uncoupling: much ado about nothing. Front Neuroenergetics 2:2

    Article  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  CAS  Google Scholar 

  • Lübke J, Feldmeyer D (2007) Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex. Brain Struct Funct 212:3–17

    Article  Google Scholar 

  • Maier A, Wilke M, Aura C, Zhu C, Ye FQ, Leopold DA (2008) Divergence of fMRI and neural signals in V1 during perceptual suppression in the awake monkey. Nat Neurosci 11(10):1193–1200

    Article  CAS  Google Scholar 

  • Maier A, Adams GK, Aura C, Leopold DA (2010) Distinct superficial and deep laminar domains of activity in the visual cortex during rest and stimulation. Front Syst Neurosci 4:31. https://doi.org/10.3389/fnsys.2010.00031

    Article  Google Scholar 

  • Maier A, Aura CJ, Leopold DA (2011) Infragranular sources of sustained local field potential responses in macaque primary visual cortex. J Neurosci 31:1971–1980

    Article  CAS  Google Scholar 

  • Maier A, Cox MA, Dougherty K, Moore B, Leopold D (2014) Anisotropy of ongoing neural activity in the primate visual cortex. Eye Brain 6(Suppl 1):113–120

    Article  Google Scholar 

  • Marín-Padilla M (1998) Cajal-Retzius cells and the development of the neocortex. Trends Neurosci 21:64–71

    Article  Google Scholar 

  • Mathiesen C, Caesar K, Akgoren N, Lauritzen M (1998) Modification of activity dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J Physiol (Lond) 512:555–566

    Article  CAS  Google Scholar 

  • Maunsell JH, Gibson JR (1992) Visual response latencies in striate cortex of the macaque monkey. J Neurophysiol 68:1332–1344

    Google Scholar 

  • Mayhew JE, Askew S, Zheng Y, Porrill J, Westby GW, Redgrave P, Rector DM, Harper RM (1996) Cerebral vasomotion: a 0.1-Hz oscillation in reflected light imaging of neural activity. Neuroimage 4:183–193

    Article  CAS  Google Scholar 

  • Mittmann W, Wallace DJ, Czubayko U, Herb JT, Schaefer AT, Looger LL, Denk W, Kerr JND (2011) Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo. Nat Neurosci 14:1089–1093

    Article  CAS  Google Scholar 

  • Mitzdorf U (1987) Properties of the evoked potential generators: current source-density analysis of visually evoked potentials in the cat cortex. Int J Neurosci 33:33–59

    Article  CAS  Google Scholar 

  • Mukamel R, Gelbard H, Arieli A, Hasson U, Fried I, Malach R (2005) Coupling between neuronal firing, field potentials, and fMR1 in human auditory cortex. Science 309:951–954

    Article  CAS  Google Scholar 

  • Nandy AS, Nassi JJ, Reynolds JH (2017) Laminar organization of attentional modulation in macaque visual area V4. Neuron 93(1):235–246

    Article  CAS  Google Scholar 

  • Nelson S (2002) Cortical microcircuits: diverse or canonical? Neuron 36:19–27

    Article  CAS  Google Scholar 

  • Nicholson C (1973) Theoretical analysis of field potentials in anisotropic ensembles of neuronal elements. IEEE Trans Biomed Eng 20:278–288

    Article  CAS  Google Scholar 

  • Nielsen A, Lauritzen M (2001) Coupling and uncoupling of activity-dependent increases of neuronal activity and blood flow in rat somatosensory cortex. J Physiol (Lond) 533:773–785

    Article  CAS  Google Scholar 

  • Niessing J, Ebisch B, Schmidt KE, Niessing M, Singer W, Galuske RA (2005) Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 309:948–951

    Article  CAS  Google Scholar 

  • Ninomiya T, Dougherty K, Godlove DC, Schall JD, Maier A (2015) Microcircuitry of agranular frontal cortex: contrasting laminar connectivity between occipital and frontal areas. J Neurophysiol 113(9):3242–3255

    Article  Google Scholar 

  • Nir Y, Fisch L, Mukamel R, Gelbard-Sagiv H, Arieli A, Fried I, Malach R (2007) Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr Biol 17:1275–1285

    Google Scholar 

  • Nowak LG, Munk MH, Girard P, Bullier J (1995) Visual latencies in areas V1 and V2 of the macaque monkey. Vis Neurosci 12:371–384

    Article  CAS  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872

    Article  CAS  Google Scholar 

  • Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic-resonance-imaging. Proc Natl Acad Sci U S A 89:5951–5955

    Article  CAS  Google Scholar 

  • Paasonen J, Stenroos P, Salo RA, Kiviniemi V, Grohn O (2018) Functional connectivity under six anesthesia protocols and the awake condition in rat brain. Neuroimage 172:9–20

    Article  Google Scholar 

  • Pan W-J, Thompson GJ, Magnuson ME, Jaeger D, Keilholz S (2013) Infraslow LFP correlates to resting-state fMRI BOLD signals. Neuroimage 74:288–297

    Article  Google Scholar 

  • Pasley BN, Inglis BA, Freeman RD (2007) Analysis of oxygen metabolism implies a neural origin for the negative BOLD response in human visual cortex. Neuroimage 36:269–276

    Google Scholar 

  • Pedemonte M, Barrenechea C, Nunez A, Gambini JP, Garcia-Austt E (1998) Membrane and circuit properties of lateral septum neurons: relationships with hippocampal rhythms. Brain Res 800:145–153

    Article  CAS  Google Scholar 

  • Peters A, Payne BR (1993) Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. Cereb Cortex 3:69–78

    Google Scholar 

  • Peters A, Sethares CJ (1991) Organization of pyramidal neurons in area 17 of monkey visual cortex. J Comp Neurol 306:1–23

    Google Scholar 

  • Polimeni JR, Fischl B, Greve DN, Wald LL (2010) Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1. Neuroimage 52:1334–1346

    Article  Google Scholar 

  • Raichle ME, Mintum MA (2006) Brain work and brain imaging. Annu Rev Neurosci 29:449–476

    Google Scholar 

  • Rakic P (2008) Confusing cortical columns. Proc Natl Acad Sci U S A 105:12099–12100

    Article  CAS  Google Scholar 

  • Rauch A, Rainer G, Logothetis NK (2008) The effect of a serotonin-induced dissociation between spiking and perisynaptic activity on BOLD functional MRI. Proc Natl Acad Sci U S A 105:6759–6764

    Article  CAS  Google Scholar 

  • Rees G, Friston K, Koch C (2000) A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci 3:716–723

    Article  CAS  Google Scholar 

  • Ritchie JM (1967) The oxygen consumption of mammalian non-myelinated nerve fibers at rest and during activity. J Physiol (Lond) 188:309–329

    Article  CAS  Google Scholar 

  • Rockel AJ, Hiorns RW, Powell TP (1980) The basic uniformity in structure of the neocortex. Brain 103:221–244

    Article  CAS  Google Scholar 

  • Rockland KS, Drash GW (1996) Collateralized divergent feedback connections that target multiple cortical areas. J Comp Neurol 373:529–548

    Article  CAS  Google Scholar 

  • Saad ZS, Ropella KM, DeYoe EA, Bandettini PA (2003) The spatial extent of the BOLD response. Neuroimage 19:132–144

    Article  Google Scholar 

  • Sajad A, Godlove DC, Schall JD (2019) Cortical microcircuitry of performance monitoring. Nat Neurosci 2:265–274

    Article  Google Scholar 

  • Schölvinck M, Maier A, Ye F, Duyn J, Leopold DA (2010) Neural basis of global resting-state fMRI activity. Proc Natl Acad Sci U S A 107(22):10238–10243

    Article  Google Scholar 

  • Schroeder CE, Mehta AD, Givre SJ (1998) A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. Cereb Cortex 8:575–592

    Google Scholar 

  • Schwartz WJ, Smith CB, Davidsen L, Savaki H, Sokoloff L et al. (1979) Metabolic mapping of functional activity in the hypothalamo-neurohypophysial system of the rat. Science 205:723–725

    Google Scholar 

  • Self MW, van Kerkoerle T, Goebel R, Roelfsema PR (2019) Benchmarking laminar fMRI: neuronal spiking and synaptic activity during top-down and bottom-up processing in the different layers of cortex. Neuroimage 197:806–817. S1053-8119(17)30517-7

    Article  Google Scholar 

  • Sheth SA, Nemoto M, Guiou M, Walker M, Pouratian N, Toga AW (2004) Linear and nonlinear relationships between neuronal activity, oxygen metabolism, and hemodynamic responses. Neuron 42:347–355

    Article  CAS  Google Scholar 

  • Shmuel A, Grinvald A (1996) Functional organization for direction of motion and its relationship to orientation maps in cat area 18. J Neurosci 16:6945–6964. and cover illustration

    Article  CAS  Google Scholar 

  • Shmuel A, Leopold DA (2008) Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: implications for functional connectivity at rest. Hum Brain Mapp 29:751–761

    Article  Google Scholar 

  • Shmuel A, Yacoub E, Pfeuffer J, Van de Moortele PF, Adriany G, Hu XP, Ugurbil K (2002) Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 36:1195–1210

    Article  CAS  Google Scholar 

  • Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9:569–577

    Article  CAS  Google Scholar 

  • Shmuel A, Yacoub E, Chaimow D, Logothetis NK, Ugurbil K (2007) Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla. Neuroimage 35:539–552

    Article  Google Scholar 

  • Silberberg G, Gupta A, Markram H (2002) Stereotypy in neocortical microcircuits. Trends Neurosci 25:227–230

    Article  CAS  Google Scholar 

  • Sirotin YB, Das A (2009) Anticipatory haemodynamic signals in sensory cortex not predicted by local neuronal activity. Nature 457(7228):475–479

    Article  CAS  Google Scholar 

  • Smith AJ, Blumenfeld H, Behar KL, Rothman DL, Shulman RG, Hyder F (2002) Cerebral energetics and spiking frequency: the neurophysiological basis of fMRI. Proc Natl Acad Sci U S A 99:10765–10770

    Article  CAS  Google Scholar 

  • Snodderly DM, Gur M (1995) Organization of striate cortex of alert, trained monkeys (Macaca fascicularis): ongoing activity, stimulus selectivity, and widths of receptive field activating regions. J Neurophys 74:2100–2125

    Article  CAS  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C] deoxyglucose method for the measurement of local glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  CAS  Google Scholar 

  • Sotero RC, Bortel A, Martínez-Cancino R, Neupane S, O’Connor P, Carbonell F, Shmuel A (2010) Anatomically-constrained effective connectivity among layers in a cortical column modeled and estimated from local field potentials. J Integr Neurosci 9:355–379

    Article  Google Scholar 

  • Sotero RC, Bortel A, Naaman S, Mocanu VM, Kropf P, Villeneuve MY, Shmuel A (2015) Laminar distribution of phase-amplitude coupling of spontaneous current sources and sinks. Front Neurosci 9:454

    Article  Google Scholar 

  • Stefanovic B, Warnking JM, Pike GB (2004) Hemodynamic and metabolic responses to neuronal inhibition. Neuroimage 22:771–778

    Article  Google Scholar 

  • Stefanovic B, Warnking JM, Kobayashi E, Bagshaw AP, Hawco C, Dubeau F, Gotman J, Pike GB (2005) Hemodynamic and metabolic responses to activation, deactivation and epileptic discharges. Neuroimage 28:205–215

    Article  Google Scholar 

  • Stephan KE, Petzschner FH, Kasper L, Bayer J, Wellstein KV, Stefanics G, Pruessmann KP, Heinzle J (2019) Laminar fMRI and computational theories of brain function. Neuroimage 197:699–706. S1053-8119(17)30908-4

    Article  CAS  Google Scholar 

  • Tan CA (2009) Anticipatory changes in regional cerebral hemodynamics: a new role for dopamine? J Neurophysiol 101:2738–2740

    Article  CAS  Google Scholar 

  • Thomsen K, Offenhauser N, Lauritzen M (2004) Principle neuron spiking: neither necessary nor sufficient for cerebral blood flow at rest or during activation in rat cerebellum. J Physiol (Lond) 560:181–189

    Article  CAS  Google Scholar 

  • Thomson AM, Bannister AP (2003) Interlaminar connections in the neocortex. Cereb Cortex 13:5–14

    Article  Google Scholar 

  • Trampel R, Bazin PL, Pine K, Weiskopf N (2019) In-vivo magnetic resonance imaging (MRI) of laminae in the human cortex. Neuroimage 197:707–715. S1053-8119(17)30785-1

    Article  Google Scholar 

  • UludaÄŸ K, Dubowitz DJ, Yoder EJ, Restom K, Liu TT, Buxton RB (2004) Coupling of cerebral blood flow and oxygen consumption during physiological activation and deactivation measured with fMRI. Neuroimage 23:148–155

    Article  Google Scholar 

  • van Kerkoerle T, Self MW, Roelfsema PR (2017) Layer-specificity in the effects of attention and working memory on activity in primary visual cortex. Nat Commun. 8:13804

    Article  Google Scholar 

  • Viswanathan A, Freeman RD (2007) Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nat Neurosci 10:1308–1312

    Google Scholar 

  • Wise RJS, Ide K, Poulin MJ, Tracey I (2004) Resting state fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. Neuroimage 21:1652–1664

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Shmuel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shmuel, A., Maier, A. (2022). Locally Measured Neuronal Correlates of Functional MRI Signals. In: Mulert, C., Lemieux, L. (eds) EEG - fMRI. Springer, Cham. https://doi.org/10.1007/978-3-031-07121-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07121-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07120-1

  • Online ISBN: 978-3-031-07121-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics