Skip to main content

EEG–fMRI in Animal Models

  • Chapter
  • First Online:
EEG - fMRI

Abstract

Simultaneous EEG–fMRI offers powerful insight into neuronal function but also presents significant technical challenges. The electroencephalogram (EEG) has excellent temporal resolution but lacks in spatial resolution and is unable to investigate deep brain structures; however, EEG provides no information about hemodynamic or metabolic changes that occur in the brain. Functional magnetic resonance imaging (fMRI) provides excellent whole brain coverage with good spatial resolution and has become the modality of choice for soft tissue. fMRI can be used to study the hemodynamic and metabolic changes associated with a diverse array of neuronal processes noninvasively but lacks the temporal resolution of EEG. Simultaneous EEG–fMRI studies combine these tools and maximize their strengths in a complimentary fashion. Animal models allow for the investigation of neuronal networks and the fundamental relationships between fMRI signals and brain electrical activity through invasive studies not possible in humans. This chapter will review the technical challenges of simultaneous EEG–fMRI studies of animal models, including issues related to anesthesia, movement, signal artifact, physiology, electrode compatibility, data acquisition, and data analysis. We will also review simultaneous EEG–fMRI studies of epilepsy, sensory–motor processing, sleep, and studies designed to specifically investigate the relationship between neuronal activity and associated neuroimaging signals. Simultaneous EEG–fMRI studies of animal models will enable us to correctly interpret human studies, ultimately elucidating specific networks that may be targeted for improved treatment of human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghakhani Y, Bagshaw AP, Benar CG, Hawco C, Andermann F, Dubeau F, Gotman J (2004) fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain 127(Pt 5):1127–1144

    Article  CAS  Google Scholar 

  • Aghakhani Y, Kobayashi E, Bagshaw AP, Hawco C, Benar CG, Dubeau F, Gotman J (2006) Cortical and thalamic fMRI responses in partial epilepsy with focal and bilateral synchronous spikes. Clin Neurophysiol 117(1):177–191

    Article  CAS  Google Scholar 

  • Angenstein F, Kammerer E, Niessen HG, Frey JU, Scheich H, Frey S (2007) Frequency-dependent activation pattern in the rat hippocampus, a simultaneous electrophysiological and fMRI study. NeuroImage 38(1):150–163

    Article  Google Scholar 

  • Archer JS, Abbott DF, Waites AB, Jackson GD (2003) fMRI “deactivation” of the posterior cingulate during generalized spike and wave. NeuroImage 20(4):1915–1922

    Article  Google Scholar 

  • Austin VC et al (2003) Differences in the BOLD fMRI response to direct and indirect cortical stimulation in the rat. Magn Reson Med 49(5):838–847

    Article  CAS  Google Scholar 

  • Austin VC, Blamire AM, Allers KA, Sharp T, Styles P, Matthews PM, Sibson NR (2005) Confounding effects of anesthesia on functional activation in rodent brain: a study of halothane and alpha-chloralose anesthesia. NeuroImage 24(1):92–100

    Article  CAS  Google Scholar 

  • Avoli M, Gloor P, Kostopoulos G, Naquet T (eds) (1990) Generalized epilepsy. Birkhauser, Boston, MA

    Google Scholar 

  • Babb TL, Kupfer W (1984) Phagocytic and metabolic reactions to chronically implanted metal brain electrodes. Exp Neurol 86(2):171–182

    Article  CAS  Google Scholar 

  • Behar KL, Petroff OA, Prichard JW, Alger JR, Shulman RG (1986) Detection of metabolites in rabbit brain by 13C NMR spectroscopy following administration of [1-13C]glucose. Magn Reson Med 3(6):911–920

    Article  CAS  Google Scholar 

  • Belliveau JW, Kennedy DN Jr, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254(5032):716–719

    Article  CAS  Google Scholar 

  • Ben-Ari Y, Lagowska J, Tremblay E, Le Gal La Salle G (1979) A new model of focal status epilepticus: intra-amygdaloid application of kainic acid elicits repetitive secondarily generalized convulsive seizures. Brain Res 163(1):176–179

    Article  CAS  Google Scholar 

  • Berger H (1929) Ueber das Elektrenkephalogramm des Menschen. Arch Psychiatry 87:527

    Article  Google Scholar 

  • Bernal-Casas D, Lee HJ, Weitz AJ, Lee JH (2017) Studying brain circuit function with dynamic causal modeling for optogenetic fMRI. Neuron 93(3):522–532.e525

    Article  CAS  Google Scholar 

  • Blumenfeld H (2005a) Cellular and network mechanisms of spike-wave seizures. Epilepsia 46(Suppl 9):21–33

    Article  CAS  Google Scholar 

  • Blumenfeld H (2005b) Consciousness and epilepsy: why are patients with absence seizures absent? Prog Brain Res 150:271–286

    Article  Google Scholar 

  • Blumenfeld H (2007) Functional MRI studies of animal models in epilepsy. Epilepsia 48(Suppl. 4):18–26

    Article  Google Scholar 

  • Blumenfeld H (2012) Impaired consciousness in epilepsy. Lancet Neurol 11(9):814–826

    Article  Google Scholar 

  • Blumenfeld H, Taylor J (2003) Why do seizures cause loss of consciousness? Neuroscientist 9(5):301–310

    Article  Google Scholar 

  • Blumenfeld H, McNally KA, Vanderhill SD, Paige AL, Chung R, Davis K, Norden AD, Stokking R, Studholme C, Novotny EJ, Zubal IG, Spencer SS (2004a) Positive and negative network correlations in temporal lobe epilepsy. Cereb Cortex 14(8):892–902

    Article  Google Scholar 

  • Blumenfeld H, Rivera M, McNally KA, Davis K, Spencer DD, Spencer SS (2004b) Ictal neocortical slowing in temporal lobe epilepsy. Neurology 63:1015–1021

    Article  CAS  Google Scholar 

  • Brevard ME, Kulkarni P, King JA, Ferris CF (2006) Imaging the neural substrates involved in the genesis of pentylenetetrazol-induced seizures. Epilepsia 47(4):745–754

    Article  Google Scholar 

  • Busch E, Hoehn-Berlage M, Eis M, Gyngell ML, Hossmann KA (1995) Simultaneous recording of EEG, DC potential and diffusion-weighted NMR imaging during potassium induced cortical spreading depression in rats. NMR Biomed 8(2):59–64

    Article  CAS  Google Scholar 

  • Chuapoco MR, Choy M, Schmid F, Duffy BA, Lee HJ, Lee JH (2019) Carbon monofilament electrodes for unit recording and functional MRI in same subjects. NeuroImage 186:806–816

    Article  CAS  Google Scholar 

  • Coenen AM, Van Luijtelaar EL (1987) The WAG/Rij rat model for absence epilepsy: age and sex factors. Epilepsy Res 1(5):297–301

    Article  CAS  Google Scholar 

  • Coenen AM, Van Luijtelaar EL (2003) Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats. Behav Genet 33:635–655

    Article  CAS  Google Scholar 

  • Damadian R (1971) Tumor detection by nuclear magnetic resonance. Science 171(3976):1151–1153

    Article  CAS  Google Scholar 

  • Davis TL, Kwong KK, Weisskoff RM, Rosen BR (1998) Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci U S A 95(4):1834–1839

    Article  CAS  Google Scholar 

  • DeSalvo MN, Schridde U, Mishra AM, Motelow JE, Purcaro MJ, Danielson N, Bai X, Hyder F, Blumenfeld H (2010) Focal BOLD fMRI changes in bicuculline-induced tonic-clonic seizures in the rat. NeuroImage 50(3):902–909

    Article  Google Scholar 

  • Detre JA, Wang J (2002) Technical aspects and utility of fMRI using BOLD and ASL. Clin Neurophysiol 113(5):621–634

    Article  Google Scholar 

  • Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion imaging. Magn Reson Med 23(1):37–45

    Article  CAS  Google Scholar 

  • Devonshire IM, Papadakis NG, Port M, Berwick J, Kennerley AJ, Mayhew JE, Overton PG (2012) Neurovascular coupling is brain region-dependent. NeuroImage 59(3):1997–2006

    Article  Google Scholar 

  • Duffy BA, Choy M, Chuapoco MR, Madsen M, Lee JH (2015) MRI compatible optrodes for simultaneous LFP and optogenetic fMRI investigation of seizure-like after discharges. NeuroImage 123:173–184

    Article  Google Scholar 

  • Englot DJ, Mishra AM, Purcaro MJ, Herman P, Hyder F, Blumenfeld H (2008) Simultaneous fMRI and electrophysiology during intracerebral stimulation of partial seizures in rats. ISMRM:Abs

    Google Scholar 

  • Feng L, Motelow JE, Ma C, Biche W, McCafferty C, Smith N, Liu M, Zhan Q, Jia R, Xiao B, Duque A, Blumenfeld H (2017) Seizures and sleep in the thalamus: focal limbic seizures show divergent activity patterns in different thalamic nuclei. J Neurosci 37(47):11441–11454

    Article  CAS  Google Scholar 

  • Gibbs FA, Lennox WG, Gibbs EL (1934) Cerebral blood flow preceding and accompanying epileptic seizures in man. Arch Neruol Psychiatry 32:257–272

    Article  Google Scholar 

  • Gloor P (1985) Neuronal generators and the problem of localization in electroencephalography: application of volume conductor theory to electroencephalography. J Clin Neurophysiol 2(4):327–354

    Article  CAS  Google Scholar 

  • Gotman J, Grova C, Bagshaw A, Kobayashi E, Aghakhani Y, Dubeau F (2005) Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci U S A 102(42):15236–15240

    Article  CAS  Google Scholar 

  • Grohn O, Pitkanen A (2007) Magnetic resonance imaging in animal models of epilepsy-noninvasive detection of structural alterations. Epilepsia 48(Suppl 4):3–10

    Article  Google Scholar 

  • Grubb RL Jr, Raichle ME, Eichling JO, Ter-Pogossian MM (1974) The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 5(5):630–639

    Article  Google Scholar 

  • Gruetter R, Novotny EJ, Boulware SD, Mason GF, Rothman DL, Shulman GI, Prichard JW, Shulman RG (1994) Localized 13C NMR spectroscopy in the human brain of amino acid labeling from D-[1-13C]glucose. J Neurochem 63(4):1377–1385

    Article  CAS  Google Scholar 

  • Gruetter R, Seaquist ER, Kim S, Ugurbil K (1998) Localized in vivo 13C-NMR of glutamate metabolism in the human brain: initial results at 4 tesla. Dev Neurosci 20(4–5):380–388

    Article  CAS  Google Scholar 

  • Guillemain I, David O, Depaulis A (2007) EEG and fMRI evidence for a cortical focus of absence seizures in the genetic absence rats from strasbourg (gaers)

    Google Scholar 

  • Hamandi K, Salek-Haddadi A, Laufs H, Liston A, Friston K, Fish DR, Duncan JS, Lemieux L (2006) EEG-fMRI of idiopathic and secondarily generalized epilepsies. NeuroImage 31(4):1700–1710

    Article  Google Scholar 

  • He J, Devonshire IM, Mayhew JE, Papadakis NG (2007) Simultaneous laser Doppler flowmetry and arterial spin labeling MRI for measurement of functional perfusion changes in the cortex. NeuroImage 34(4):1391–1404

    Article  Google Scholar 

  • Herman P, Sanganahalli BG, Blumenfeld H, Hyder F (2009) Cerebral oxygen demand for short-lived and steady-state events. J Neurochem 109(Suppl 1):73–79

    Article  CAS  Google Scholar 

  • Herman P, Sanganahalli BG, Blumenfeld H, Rothman DL, Hyder F (2013) Quantitative basis for neuroimaging of cortical laminae with calibrated functional MRI. Proc Natl Acad Sci U S A 110(37):15115–15120

    Article  CAS  Google Scholar 

  • Hiremath GK, Najm IM (2007) Magnetic resonance spectroscopy in animal models of epilepsy. Epilepsia 48(Suppl 4):47–55

    Article  Google Scholar 

  • Hoge RD (2012) Calibrated FMRI. NeuroImage 62(2):930–937

    Article  Google Scholar 

  • Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB (1999) Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc Natl Acad Sci U S A 96(16):9403–9408

    Article  CAS  Google Scholar 

  • Horsley V (1892) An address on the origin and seat of epileptic disturbance. Br Med J 1:693–696

    Article  CAS  Google Scholar 

  • Hudetz AG (2002) Effect of volatile anesthetics on interhemispheric EEG cross-approximate entropy in the rat. Brain Res 954(1):123–131

    Article  CAS  Google Scholar 

  • Hyder F (2004) Neuroimaging with calibrated FMRI. Stroke 35(11 Suppl 1):2635–2641

    Article  Google Scholar 

  • Hyder F, Blumenfeld H (2004) Relationship between CMRO2 and neuronal activity. In: Shulman RG, Rothman DL (eds) Brain energetics and neuronal activity: applications to fMRI and medicine. John Wiley & Sons, Inc., New York, NY, pp 173–194

    Google Scholar 

  • Hyder F, Rothman DL (2012) Quantitative fMRI and oxidative neuroenergetics. NeuroImage 62(2):985–994

    Article  CAS  Google Scholar 

  • Hyder F, Kennan RP, Kida I, Mason GF, Behar KL, Rothman D (2000) Dependence of oxygen delivery on blood flow in rat brain: a 7 tesla nuclear magnetic resonance study. J Cereb Blood Flow Metab 20(3):485–498

    Article  CAS  Google Scholar 

  • Hyder F, Kida I, Behar KL, Kennan RP, Maciejewski PK, Rothman DL (2001) Quantitative functional imaging of the brain: towards mapping neuronal activity by BOLD fMRI. NMR Biomed 14(7–8):413–431

    Article  CAS  Google Scholar 

  • Hyder F, Kida I, Smith AJ, Blumenfeld H, Shulman RG, Rothman DL (2002a) Quantitative fMRI of rat brain by multi-modal MRI and MRS measurements. In: International Symposium on Brain Activation and CBF Control, International Congress Series

    Google Scholar 

  • Hyder F, Rothman DL, Shulman RG (2002b) Total neuroenergetics support localized brain activity: implications for the interpretation of fMRI. Proc Natl Acad Sci U S A 99(16):10771–10776

    Article  CAS  Google Scholar 

  • Hyder F, Sanganahalli BG, Herman P, Coman D, Maandag NJ, Behar KL, Blumenfeld H, Rothman DL (2010) Neurovascular and neurometabolic couplings in dynamic calibrated fMRI: transient oxidative neuroenergetics for block-design and event-related paradigms. Front Neuroenerg 2:18

    Google Scholar 

  • Ives JR, Warach S, Schmitt F, Edelman RR, Schomer DL (1993) Monitoring the patient’s EEG during echo planar MRI. Clin Neurol 87:417–420

    CAS  Google Scholar 

  • Jones M, Berwick J, Hewson-Stoate N, Gias C, Mayhew J (2005) The effect of hypercapnia on the neural and hemodynamic responses to somatosensory stimulation. NeuroImage 27(3):609–623

    Article  Google Scholar 

  • Jupp B, Williams JP, Tesiram YA, Vosmansky M, O’Brien TJ (2006) MRI compatible electrodes for the induction of amygdala kindling in rats. J Neurosci Methods 155(1):72–76

    Article  Google Scholar 

  • Kayser C, Kim M, Ugurbil K, Kim DS, Konig P (2004) A comparison of hemodynamic and neural responses in cat visual cortex using complex stimuli. Cereb Cortex 14(8):881–891

    Article  Google Scholar 

  • Kennan RP, Zhong J, Gore JC (1994) Intravascular susceptibility contrast mechanisms in tissue. Magn Reson Med 31:9–21

    Article  CAS  Google Scholar 

  • Kennan RP, Scanley BE, Innis RB, Gore JC (1998) Physiological basis for BOLD MR signal changes due to neuronal stimulation: separation of blood volume and magnetic susceptibility effects. Magn Reson Med 40(6):840–846

    Article  CAS  Google Scholar 

  • Keogh BP, Cordes D, Stanberry L, Figler BD, Robbins CA, Tempel BL, Green CG, Emmi A, Maravilla KM, Schwartzkroin PA (2005) BOLD-fMRI of PTZ-induced seizures in rats. Epilepsy Res 66(1–3):75–90

    Article  CAS  Google Scholar 

  • Khubchandani M, Mallick HN, Jagannathan NR, Mohan Kumar V (2003) Stereotaxic assembly and procedures for simultaneous electrophysiological and MRI study of conscious rat. Magn Reson Med 49:962–967

    Article  CAS  Google Scholar 

  • Khubchandani M, Jagannathan NR, Mallick HN, Mohan Kumar V (2005) Functional MRI shows activation of the medial preoptic area during sleep. NeuroImage 26(1):29–35

    Article  CAS  Google Scholar 

  • Kida I, Kennan RP, Rothman DL, Behar KL, Hyder F (2000) High-resolution CMR(O2) mapping in rat cortex: a multiparametric approach to calibration of BOLD image contrast at 7 Tesla. J Cereb Blood Flow Metab 20(5):847–860

    Article  CAS  Google Scholar 

  • Kida I, Rothman DL, Hyder F (2007) Dynamics of changes in blood flow, volume, and oxygenation: implications for dynamic functional magnetic resonance imaging calibration. J Cereb Blood Flow Metab 27(4):690–696

    Article  Google Scholar 

  • Krakow K, Allen PJ, Symms MR, Lemieux L, Josephs O, Fish DR (2000) EEG recording during fMRI experiments: image quality. Hum Brain Mapp 10(1):10–15

    Article  CAS  Google Scholar 

  • Labate A, Briellmann RS, Abbott DF, Waites AB, Jackson GD (2005) Typical childhood absence seizures are associated with thalamic activation. Epileptic Disord 7(4):373–377

    CAS  Google Scholar 

  • Lahti KM et al (1999) Comparison of evoked cortical activity in conscious and propofol-anesthetized rats using functional MRI. Magn Reson Med 41(2):412–416

    Article  CAS  Google Scholar 

  • Laufs H, Lengler U, Hamandi K, Kleinschmidt A, Krakow K (2006) Linking generalized spike-and-wave discharges and resting state brain activity by using EEG/fMRI in a patient with absence seizures. Epilepsia 47(2):444–448

    Article  Google Scholar 

  • Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242(5394):190–191

    Article  CAS  Google Scholar 

  • Lee JH, Kreitzer AC, Singer AC, Schiff ND (2017) Illuminating neural circuits: from molecules to MRI. J Neurosci 37(45):10817–10825

    Article  CAS  Google Scholar 

  • Li W, Motelow JE, Zhan Q, Hu YC, Kim R, Chen WC, Blumenfeld H (2015) Cortical network switching: possible role of the lateral septum and cholinergic arousal. Brain Stimul 8(1):36–41

    Article  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157

    Article  CAS  Google Scholar 

  • Maandag NJ, Coman D, Sanganahalli BG, Herman P, Smith AJ, Blumenfeld H, Shulman RG, Hyder F (2007) Energetics of neuronal signaling and fMRI activity. Proc Natl Acad Sci U S A 104(51):20546–20551

    Article  CAS  Google Scholar 

  • Makiranta MJ, Jauhiainen JP, Oikarinen JT, Suominen K, Tervonen O, Alahuhta S, Jantti V (2002) Functional magnetic resonance imaging of swine brain during change in thiopental anesthesia into EEG burst-suppression level--a preliminary study. MAGMA 15(1–3):27–35

    CAS  Google Scholar 

  • Makiranta M, Ruohonen J, Suominen K, Niinimaki J, Sonkajarvi E, Kiviniemi V, Seppanen T, Alahuhta S, Jantti V, Tervonen O (2005) BOLD signal increase preceeds EEG spike activity--a dynamic penicillin induced focal epilepsy in deep anesthesia. NeuroImage 27(4):715–724

    Article  Google Scholar 

  • Mandeville JB, Marota JJ, Kosofsky BE, Keltner JR, Weissleder R, Rosen BR, Weisskoff RM (1998) Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation. Magn Reson Med 39(4):615–624

    Article  CAS  Google Scholar 

  • Mandeville JB, Marota JJ, Ayata C, Moskowitz MA, Weisskoff RM, Rosen BR (1999) MRI measurement of the temporal evolution of relative CMRO(2) during rat forepaw stimulation. Magn Reson Med 42(5):944–951

    Article  CAS  Google Scholar 

  • Martin C, Jones M, Martindale J, Mayhew J (2006) Haemodynamic and neural responses to hypercapnia in the awake rat. Eur J Neurosci 24(9):2601–2610

    Article  Google Scholar 

  • Mason GF, Behar KL, Rothman DL, Shulman RG (1992) NMR determination of intracerebral glucose concentration and transport kinetics in rat brain. J Cereb Blood Flow Metab 12(3):448–455

    Article  CAS  Google Scholar 

  • Mason GF, Gruetter R, Rothman DL, Behar KL, Shulman RG, Novotny EJ (1995) Simultaneous determination of the rates of the TCA cycle, glucose utilization, alpha-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR. J Cereb Blood Flow Metab 15(1):12–25

    Article  CAS  Google Scholar 

  • Matsumoto H, Marsan CA (1964) Cortical cellular phenomena in experimental epilepsy: ictal manifestations. Exp Neurol 9:305–326

    Article  CAS  Google Scholar 

  • Matthews PM, Honey GD, Bullmore ET (2006) Applications of fMRI in translational medicine and clinical practice. Nat Rev Neurosci 7(9):732–744

    Article  CAS  Google Scholar 

  • Meeren HK, Pijn JP, Van Luijtelaar EL, Coenen AM, Lopes da Silva FH (2002) Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci 22(4):1480–1495

    Article  CAS  Google Scholar 

  • Menon RS, Ogawa S, Tank DW, Ugurbil K (1993) Tesla gradient recalled echo characteristics of photic stimulation-induced signal changes in the human primary visual cortex. Magn Reson Med 30(3):380–386

    Article  CAS  Google Scholar 

  • Midzianovskaia IS, Kuznetsova GD, Coenen AML, Spiridonov AM, van Luijtelaar ELJM (2001) Electrophysiological and pharmacological characteristics of two types of spike-wave discharges in WAG/Rij rats. Brain Res 911:62–70

    Article  CAS  Google Scholar 

  • Mirsattari SM, Bihari F, Leung LS, Menon RS, Wang Z, Ives JR, Bartha R (2005a) Physiological monitoring of small animals during magnetic resonance imaging. J Neurosci Methods 144(2):207–213

    Article  Google Scholar 

  • Mirsattari SM, Ives JR, Bihari F, Leung LS, Menon RS, Bartha R (2005b) Real-time display of artifact-free electroencephalography during functional magnetic resonance imaging and magnetic resonance spectroscopy in an animal model of epilepsy. Magn Reson Med 53(2):456–464

    Article  Google Scholar 

  • Mirsattari SM, Wang Z, Ives JR, Bihari F, Leung LS, Bartha R, Menon RS (2006) Linear aspects of transformation from interictal epileptic discharges to BOLD fMRI signals in an animal model of occipital epilepsy. NeuroImage 30(4):1133–1148

    Article  Google Scholar 

  • Mirsattari SM, Ives JR, Leung LS, Menon RS (2007) EEG monitoring during functional MRI in animal models. Epilepsia 48(Suppl 4):37–46

    Article  Google Scholar 

  • Mishra AM, Schridde U, Motelow JE, Hyder F Blumenfeld H (2007) Physiology and imaging of increases and decreases in BOLD signals during spike-wave seizures in WAG/Rij rats. http://web.sfn.org/

  • Mishra AM, Ellens DJ, Schridde U, Motelow JE, Purcaro MJ, DeSalvo MN, Enev M, Sanganahalli BG, Hyder F, Blumenfeld H (2011) Where fMRI and electrophysiology agree to disagree: corticothalamic and striatal activity patterns in the WAG/Rij rat. J Neurosci 31(42):15053–15064

    Article  CAS  Google Scholar 

  • Motelow JE, Li W, Zhan Q, Mishra AM, Sachdev RN, Liu G, Gummadavelli A, Zayyad Z, Lee HS, Chu V, Andrews JP, Englot DJ, Herman P, Sanganahalli BG, Hyder F, Blumenfeld H (2015) Decreased subcortical cholinergic arousal in focal seizures. Neuron 85(3):561–572

    Article  CAS  Google Scholar 

  • Nakahata K, Kinoshita H, Hirano Y, Kimoto Y, Iranami H, Hatano Y (2003) Mild hypercapnia induces vasodilation via adenosine triphosphate-sensitive K+ channels in parenchymal microvessels of the rat cerebral cortex. Anesthesiology 99(6):1333–1339

    Article  CAS  Google Scholar 

  • Negishi M, Abildgaard M, Nixon T, Constable RT (2004) Removal of time-varying gradient artifacts from EEG data acquired during continuous fMRI. Clin Neurophysiol 115(9):2181–2192

    Article  Google Scholar 

  • Nersesyan H, Herman P, Erdogan E, Hyder F, Blumenfeld H (2004a) Relative changes in cerebral blood flow and neuronal activity in local microdomains during generalized seizures. J Cereb Blood Flow Metab 24(9):1057–1068

    Article  Google Scholar 

  • Nersesyan H, Hyder F, Rothman D, Blumenfeld H (2004b) Dynamic fMRI and EEG recordings during spike-wave seizures and generalized tonic-clonic seizures in WAG/Rij rats. J Cereb Blood Flow Metab 24(6):589–599

    Article  Google Scholar 

  • Ogawa S, Lee T (1992) Blood oxygen level dependent MRI of the brain: effects of seizure induced by kainic acid in the rat. Proc Soc Magn Reson Med 1:501

    Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87(24):9868–9872

    Article  CAS  Google Scholar 

  • Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil K (1993) Functional Brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. Biophys J 64:803–812

    Article  CAS  Google Scholar 

  • Ogawa S, Menon RS, Kim SG, Ugurbil K (1998) On the characteristics of functional magnetic resonance imaging of the brain. Annu Rev Biophys Biomol Struct 27:447–474

    Article  CAS  Google Scholar 

  • Ogawa S, Lee TM, Stepnoski R, Chen W, Zhu XH, Ugurbil K (2000) An approach to probe some neural systems interaction by functional MRI at neural time scale down to milliseconds. Proc Natl Acad Sci U S A 97(20):11026–11031

    Article  CAS  Google Scholar 

  • Opdam HI, Federico P, Jackson GD, Buchanan J, Abbott DF, Fabinyi GC, Syngeniotis A, Vosmansky M, Archer JS, Wellard RM, Bellomo R (2002) A sheep model for the study of focal epilepsy with concurrent intracranial EEG and functional MRI. Epilepsia 43(8):779–787

    Article  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San Diego, CA

    Google Scholar 

  • Peeters RR, Tindemans I, De Schutter E, Van der Linden A (2001) Comparing BOLD fMRI signal changes in the awake and anesthetized rat during electrical forepaw stimulation. Magn Reson Imaging 19(6):821–826

    Article  CAS  Google Scholar 

  • Penfield W (1933) The evidence for a cerebral vascular mechanism in epilepsy. Ann Intern Med 7:303–310

    Article  Google Scholar 

  • Pinault D, Leresche N, Charpier S, Deniau JM, Marescaux C, Vergnes M, Crunelli V (1998) Intracellular recordings in thalamic neurones during spontaneous spike and wave discharges in rats with absence epilepsy. J Physiol 509(Pt 2):449–456

    Article  CAS  Google Scholar 

  • Ritter P, Villringer A (2006) Simultaneous EEG-fMRI. Neurosci Biobehav Rev 30(6):823–838

    Article  Google Scholar 

  • Rothman DL, Sibson NR, Hyder F, Shen J, Behar KL, Shulman RG (1999) In vivo nuclear magnetic resonance spectroscopy studies of the relationship between the glutamate-glutamine neurotransmitter cycle and functional neuroenergetics. Phil Trans R Soc Lond B Biol Sci 354(1387):1165–1177

    Article  CAS  Google Scholar 

  • Sachdev RN, Champney GC, Lee H, Price RR, Pickens DR III, Morgan VL, Stefansic JD, Melzer P, Ebner FF (2003) Experimental model for functional magnetic resonance imaging of somatic sensory cortex in the unanesthetized rat. NeuroImage 19(3):742–750

    Article  Google Scholar 

  • Salek-Haddadi A, Merschhemke M, Lemieux L, Fish DR (2002) Simultaneous EEG-correlated ictal fMRI. NeuroImage 16(1):32–40

    Article  Google Scholar 

  • Salek-Haddadi A, Lemieux L, Merschhemke M, Friston KJ, Duncan JS, Fish DR (2003) Functional magnetic resonance imaging of human absence seizures. Ann Neurol 53(5):663–667

    Article  Google Scholar 

  • Sanganahalli BG, Herman P, Blumenfeld H, Hyder F (2009) Oxidative neuroenergetics in event-related paradigms. J Neurosci 29(6):1707–1718

    Article  CAS  Google Scholar 

  • Sanganahalli BG, Herman P, Behar KL, Blumenfeld H, Rothman DL, Hyder F (2013) Functional MRI and neural responses in a rat model of Alzheimer’s disease. NeuroImage 79:404–411

    Article  Google Scholar 

  • Sanganahalli BG, Herman P, Rothman DL, Blumenfeld H, Hyder F (2016) Metabolic demands of neural-hemodynamic associated and disassociated areas in brain. J Cereb Blood Flow Metab 36:1695

    Article  Google Scholar 

  • Scholvinck ML, Maier A, Ye FQ, Duyn JH, Leopold DA (2010) Neural basis of global resting-state fMRI activity. Proc Natl Acad Sci U S A 107(22):10238–10243

    Article  CAS  Google Scholar 

  • Schridde U, Khubchandani M, Motelow J, Sanganahalli BG, Hyder F, Blumenfeld H (2007) Negative BOLD with large increases in neuronal activity. Cereb Cortex 18:1814

    Article  Google Scholar 

  • Schwartz TH, Bonhoeffer T (2001) In vivo optical mapping of epileptic foci and surround inhibition in ferret cerebral cortex. Nat Med 7(9):1063–1067

    Article  CAS  Google Scholar 

  • Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9(4):569–577

    Article  CAS  Google Scholar 

  • Shu CY, Herman P, Coman D, Sanganahalli BG, Wang H, Juchem C, Rothman DL, de Graaf RA, Hyder F (2016a) Brain region and activity-dependent properties of M for calibrated fMRI. NeuroImage 125:848–856

    Article  Google Scholar 

  • Shu CY, Sanganahalli BG, Coman D, Herman P, Rothman DL, Hyder F (2016b) Quantitative beta mapping for calibrated fMRI. NeuroImage 126:219–228

    Article  Google Scholar 

  • Shulman RG, Rothman DLE (2004) Brain energetics and neuronal activity: applications to fMRI and medicine. John Wiley & Sons, Inc, New York, NY

    Book  Google Scholar 

  • Shulman RG, Rothman DL, Hyder F (1999) Stimulated changes in localized cerebral energy consumption under anesthesia. Proc Natl Acad Sci U S A 96(6):3245–3250

    Article  CAS  Google Scholar 

  • Shulman RG, Hyder F, Rothman DL (2001) Cerebral energetics and the glycogen shunt: neurochemical basis of functional imaging. Proc Natl Acad Sci U S A 98(11):6417–6422

    Article  CAS  Google Scholar 

  • Shulman RG, Hyder F, Rothman DL (2002) Biophysical basis of brain activity: implications for neuroimaging. Q Rev Biophys 35(3):287–325

    Article  CAS  Google Scholar 

  • Shulman RG, Rothman DL, Behar KL, Hyder F (2004) Energetic basis of brain activity: implications for neuroimaging. Trends Neurosci 27(8):489–495

    Article  CAS  Google Scholar 

  • Shyu BC, Lin CY, Sun JJ, Sylantyev S, Chang C (2004) A method for direct thalamic stimulation in fMRI studies using a glass-coated carbon fiber electrode. J Neurosci Methods 137(1):123–131

    Article  Google Scholar 

  • Sijbers J, Vanrumste B, Van Hoey G, Boon P, Verhoye M, Van der Linden A, Van Dyck D (2000) Automatic localization of EEG electrode markers within 3D MR data. Magn Reson Imaging 18(4):485–488

    Article  CAS  Google Scholar 

  • Sloan TB (1998) Anesthetic effects on electrophysiologic recordings. J Clin Neurophysiol 15(3):217–226

    Article  CAS  Google Scholar 

  • Sloan HL, Austin VC, Blamire AM, Schnupp JW, Lowe AS, Allers KA, Matthews PM, Sibson NR (2010) Regional differences in neurovascular coupling in rat brain as determined by fMRI and electrophysiology. NeuroImage 53(2):399–411

    Article  CAS  Google Scholar 

  • Smith AJ, Blumenfeld H, Behar KL, Rothman DL, Shulman RG, Hyder F (2002) Cerebral energetics and spiking frequency: the neurophysiological basis of fMRI. Proc Natl Acad Sci U S A 99(16):10765–10770

    Article  CAS  Google Scholar 

  • Snead OC III, Depaulis A, Vergnes M, Marescaux C (1999) Absence epilepsy: advances in experimental animal models. Adv Neurol 79:253–278

    Google Scholar 

  • Stefanovic B, Warnking JM, Pike GB (2004) Hemodynamic and metabolic responses to neuronal inhibition. NeuroImage 22(2):771–778

    Article  Google Scholar 

  • Tallgren P, Vanhatalo S, Kaila K, Voipio J (2005) Evaluation of commercially available electrodes and gels for recording of slow EEG potentials. Clin Neurophysiol 116(4):799–806

    Article  CAS  Google Scholar 

  • Tenney JR, Duong TQ, King JA, Ludwig R, Ferris CF (2003) Corticothalamlic modulation during absence seizures in rats: a functional MRI assessment. Epilepsia 44(9):1133–1140

    Article  Google Scholar 

  • Tenney JR, Duong TQ, King JA, Ferris CF (2004a) FMRI of brain activation in a genetic rat model of absence seizures. Epilepsia 45(6):576–582

    Article  Google Scholar 

  • Tenney JR, Marshall PC, King JA, Ferris CF (2004b) fMRI of generalized absence status epilepticus in conscious marmoset monkeys reveals corticothalamic activation. Epilepsia 45(10):1240–1247

    Article  Google Scholar 

  • Tolias AS, Sultan F, Augath M, Oeltermann A, Tehovnik EJ, Schiller PH, Logothetis NK (2005) Mapping cortical activity elicited with electrical microstimulation using FMRI in the macaque. Neuron 48(6):901–911

    Article  CAS  Google Scholar 

  • Turner R, Jezzard P, Wen H, Kwong KK, Le Bihan D, Zeffiro T, Balaban RS (1993) Functional mapping of the human visual cortex at 4 and 1.5 tesla using deoxygenation contrast EPI. Magn Reson Med 29(2):277–279

    Article  CAS  Google Scholar 

  • Van Audekerkea J, Peeters R, Verhoye M, Sijbers J, Van der Linden A (2000) Special designed RF-antenna with integrated non-invasive carbon electrodes for simultaneous magnetic resonance imaging and electroencephalography acquisition at 7T. Magn Reson Imaging 18(7):887–891

    Article  Google Scholar 

  • Van Camp N, D’Hooge R, Verhoye M, Peeters RR, De Deyn PP, Van der Linden A (2003) Simultaneous electroencephalographic recording and functional magnetic resonance imaging during pentylenetetrazol-induced seizures in rat. NeuroImage 19:627–636

    Article  Google Scholar 

  • Weisskoff RM, Zuo CS, Boxerman JL, Rosen BR (1994) Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med 31:601–610

    Article  CAS  Google Scholar 

  • Winters WD (1976) Effects of drugs on the electrical activity of the brain: anesthetics. Annu Rev Pharmacol Toxicol 16:413–426

    Article  CAS  Google Scholar 

  • Wood AK, Klide AM, Pickup S, Kundel HL (2001) Prolonged general anesthesia in MR studies of rats. Acad Radiol 8(11):1136–1140

    Article  CAS  Google Scholar 

  • Yang Y, Wen H, Mattay VS, Balaban RS, Frank JA, Duyn JH (1999) Comparison of 3D BOLD functional MRI with spiral acquisition at 1.5 and 4.0 T. NeuroImage 9(4):446–451

    Article  CAS  Google Scholar 

  • Young GB, Ives JR, Chapman MG, Mirsattari SM (2006) A comparison of subdermal wire electrodes with collodion-applied disk electrodes in long-term EEG recordings in ICU. Clin Neurophysiol 117(6):1376–1379

    Article  Google Scholar 

  • Youngblood MW, Chen WC, Mishra AM, Enamandram S, Sanganahalli BG, Motelow JE, Bai HX, Frohlich F, Gribizis A, Lighten A, Hyder F, Blumenfeld H (2015) Rhythmic 3-4Hz discharge is insufficient to produce cortical BOLD fMRI decreases in generalized seizures. NeuroImage 109:368–377

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ms. Katherine Steadman for administrative support. This chapter is dedicated in memory of Dr. Damien Ellens, a beloved member of the Blumenfeld Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hal Blumenfeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gummadavelli, A., Sanganahalli, B.G., Herman, P., Hyder, F., Blumenfeld, H. (2022). EEG–fMRI in Animal Models. In: Mulert, C., Lemieux, L. (eds) EEG - fMRI. Springer, Cham. https://doi.org/10.1007/978-3-031-07121-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07121-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07120-1

  • Online ISBN: 978-3-031-07121-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics