Skip to main content

Neuronal Models for EEG–fMRI Integration

  • Chapter
  • First Online:
EEG - fMRI
  • 1207 Accesses

Abstract

Human brain activity can be measured in many ways, providing different views into its functions. Common measurements of human brain function, such as functional MRI (fMRI) and electroencephalography (EEG), are often integrated to get the best spatial and temporal resolution, but these measurements frequently show differences. This chapter therefore considers how the pooling of signals across populations of neurons affects these measurements. We consider a modeling framework in which fMRI and field potential signals integrate across transmembrane currents in a population of neurons, because synaptic activity is thought to be the largest drive of the fMRI signal and transmembrane potentials are the biggest source of field potentials. We formulate computations that provide simplified abstractions that inform how levels of synaptic activity or synchrony across neurons contribute to fMRI or electrophysiological signals and how to interpret deviations or similarities between measurements. The modeling framework and computations highlight that the level of activity in a neuronal population influences each measurement, but synchrony only has a large effect on field potentials and not on the fMRI signal. An application to data from human visual cortex explains why certain signals correlate and others do not. Advancing the fundamental understanding of how different measurements integrate neuronal activity will be important to combine fMRI and EEG measurements to better understand human brain function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Attwell D et al (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243

    Article  CAS  Google Scholar 

  • Bartoli E et al (2019) Functionally distinct gamma range activity revealed by stimulus tuning in human visual cortex. Curr Biol 29:3345–3358.e7

    Article  CAS  Google Scholar 

  • Berger H (1931) Über das Elektrenkephalogramm des Menschen. Arch Für Psychiatr Nervenkrankh 94:16–60

    Article  Google Scholar 

  • Bollimunta A, Chen Y, Schroeder CE, Ding M (2008) Neuronal mechanisms of cortical alpha oscillations in awake-behaving macaques. J Neurosci 28:9976–9988

    Article  CAS  Google Scholar 

  • Butler R, Bernier PM, Lefebvre J, Gilbert G, Whittingstall K (2017) Decorrelated input dissociates narrow band gamma power and BOLD in human visual cortex. J Neurosci 37:5408–5418. https://doi.org/10.1523/JNEUROSCI.3938-16.2017

    Article  CAS  Google Scholar 

  • Buxton RB, Frank LR (1997) A Model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab 17:64–72

    Article  CAS  Google Scholar 

  • Buxton RB, Uludağ K, Dubowitz DJ, Liu TT (2004) Modeling the hemodynamic response to brain activation. NeuroImage 23:S220–S233

    Article  Google Scholar 

  • Buzsáki G, Wang X-J (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225

    Article  Google Scholar 

  • Buzsáki G, Lai-Wo SL, Vanderwolf CH (1983) Cellular bases of hippocampal EEG in the behaving rat. Brain Res Rev 6:139–171

    Article  Google Scholar 

  • Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407–420

    Article  Google Scholar 

  • Caesar K, Gold L, Lauritzen M (2003) Context sensitivity of activity-dependent increases in cerebral blood flow. Proc Natl Acad Sci 100:4239–4244

    Article  CAS  Google Scholar 

  • Cole SR, Voytek B (2017) Brain oscillations and the importance of waveform shape. Trends Cogn Sci 21:137–149

    Article  Google Scholar 

  • Conner CR, Ellmore TM, Pieters TA, DiSano MA, Tandon N (2011) Variability of the relationship between electrophysiology and BOLD-fMRI across cortical regions in humans. J Neurosci 31:12855–12865

    Article  CAS  Google Scholar 

  • Dale AM, Halgren E (2001) Spatiotemporal mapping of brain activity by integration of multiple imaging modalities. Curr Opin Neurobiol 11:202–208

    Article  CAS  Google Scholar 

  • Friston KJ, Mechelli A, Turner R, Price CJ (2000) Nonlinear responses in fMRI: the balloon model, volterra kernels, and other hemodynamics. NeuroImage 12:466–477

    Article  CAS  Google Scholar 

  • He BJ, Raichle ME (2009) The fMRI signal, slow cortical potential and consciousness. Trends Cogn Sci 13:302–309

    Article  Google Scholar 

  • Heeger DJ, Huk AC, Geisler WS, Albrecht DG (2000) Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? Nat Neurosci 3:631–633

    Article  CAS  Google Scholar 

  • Hermes D et al (2011) Neurophysiologic correlates of fMRI in human motor cortex. Hum Brain Mapp 33:1689–1699

    Article  Google Scholar 

  • Hermes D et al (2014) Cortical theta wanes for language. NeuroImage 85:738–748

    Article  Google Scholar 

  • Hermes D, Miller KJ, Wandell BA, Winawer J (2015) Stimulus dependence of gamma oscillations in human visual cortex. Cereb Cortex 25:2951–2959

    Article  CAS  Google Scholar 

  • Hermes D, Nguyen M, Winawer J (2017) Neuronal synchrony and the relation between the blood-oxygen-level dependent response and the local field potential. PLoS Biol 15:e2001461

    Article  Google Scholar 

  • Hillman EMC (2014) Coupling mechanism and significance of the BOLD signal: a status report. Annu Rev Neurosci 37:161–181

    Article  CAS  Google Scholar 

  • Iadecola C (2017) The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96:17–42

    Article  CAS  Google Scholar 

  • Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci 4:186

    Article  Google Scholar 

  • Jia X, Xing D, Kohn A (2013) No consistent relationship between gamma power and peak frequency in macaque primary visual cortex. J Neurosci 33:17–25

    Article  CAS  Google Scholar 

  • Kang K, Shelley M, Henrie JA, Shapley R (2010) LFP spectral peaks in V1 cortex: network resonance and cortico-cortical feedback. J Comput Neurosci 29:495–507

    Article  Google Scholar 

  • Katzner S et al (2009) Local origin of field potentials in visual cortex. Neuron 61:35–41

    Article  CAS  Google Scholar 

  • Lima B, Cardoso MMB, Sirotin YB, Das A (2014) Stimulus-related neuroimaging in task-engaged subjects is best predicted by concurrent spiking. J Neurosci 34:13878–13891

    Article  CAS  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  CAS  Google Scholar 

  • Magri C, Schridde U, Murayama Y, Panzeri S, Logothetis NK (2012) The Amplitude and timing of the BOLD signal reflects the relationship between local field potential power at different frequencies. J Neurosci 32:1395–1407

    Article  CAS  Google Scholar 

  • Maier A et al (2008) Divergence of fMRI and neural signals in V1 during perceptual suppression in the awake monkey. Nat Neurosci 11:1193–1200

    Article  CAS  Google Scholar 

  • Mandeville JB et al (1999) Evidence of a cerebrovascular postarteriole windkessel with delayed compliance. J Cereb Blood Flow Metab 19:679–689

    Article  CAS  Google Scholar 

  • Mathiesen C, Caesar K, Akgören N, Lauritzen M (1998) Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J Physiol 512:555–566

    Article  CAS  Google Scholar 

  • Miller KJ, Sorensen LB, Ojemann JG, den Nijs M (2009) Power-law scaling in the brain surface electric potential. PLoS Comput Biol 5:e1000609

    Article  Google Scholar 

  • Miller KJ et al (2010) Dynamic modulation of local population activity by rhythm phase in human occipital cortex during a visual search task. Front Hum Neurosci 4:197

    Article  Google Scholar 

  • Mukamel R et al (2005) Coupling between neuronal firing, field potentials, and fMRI in human auditory cortex. Science 309:951–954

    Article  CAS  Google Scholar 

  • Murphy MC, Chan KC, Kim S-G, Vazquez AL (2018) Macroscale variation in resting-state neuronal activity and connectivity assessed by simultaneous calcium imaging, hemodynamic imaging and electrophysiology. NeuroImage 169:352–362

    Article  Google Scholar 

  • Murta T et al (2016) A study of the electro-haemodynamic coupling using simultaneously acquired intracranial EEG and fMRI data in humans. NeuroImage 142:371–380

    Article  CAS  Google Scholar 

  • Murta T et al (2017) Phase–amplitude coupling and the BOLD signal: a simultaneous intracranial EEG (icEEG) - fMRI study in humans performing a finger-tapping task. NeuroImage 146:438–451

    Article  CAS  Google Scholar 

  • Muthukumaraswamy SD, Singh KD (2008) Functional decoupling of BOLD and gamma-band amplitudes in human primary visual cortex. Hum Brain Mapp 30:2000–2007

    Article  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci 87:9868–9872

    Article  CAS  Google Scholar 

  • Ojemann GAM, Ramsey NFP, Ojemann JMD (2013) Relation between functional magnetic resonance imaging (fMRI) and single neuron, local field potential (LFP) and electrocorticography (ECoG) activity in human cortex. Front Hum Neurosci 7:34

    Article  Google Scholar 

  • Perrenoud Q, Pennartz CMA, Gentet LJ (2016) Membrane potential dynamics of spontaneous and visually evoked gamma activity in V1 of awake mice. PLoS Biol 14:e1002383

    Article  Google Scholar 

  • Ray S, Maunsell JHR (2011) Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol 9:e1000610

    Article  CAS  Google Scholar 

  • Saalmann YB, Kastner S (2009) Gain control in the visual thalamus during perception and cognition. Curr Opin Neurobiol 19:408–414

    Article  CAS  Google Scholar 

  • Schalk G (2015) A general framework for dynamic cortical function: the function-through-biased-oscillations (FBO) hypothesis. Front Hum Neurosci 9:352

    Article  Google Scholar 

  • Schalk G, Marple J, Knight RT, Coon WG (2017) Instantaneous voltage as an alternative to power- and phase-based interpretation of oscillatory brain activity. NeuroImage 157:545–554

    Article  Google Scholar 

  • Scheeringa R et al (2011) Neuronal dynamics underlying high- and low-frequency EEG oscillations contribute independently to the human BOLD signal. Neuron 69:572–583

    Article  CAS  Google Scholar 

  • Siero JCW et al (2014) BOLD matches neuronal activity at the mm scale: a combined 7T fMRI and ECoG study in human sensorimotor cortex. NeuroImage 101:177–184

    Article  Google Scholar 

  • Sirotin YB, Das A (2009) Anticipatory haemodynamic signals in sensory cortex not predicted by local neuronal activity. Nature 457:475–479

    Article  CAS  Google Scholar 

  • Uhlirova H et al (2016) Cell type specificity of neurovascular coupling in cerebral cortex. elife 5:e14315

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Jonathan Winawer for many discussions about the modeling framework described in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dora Hermes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hermes, D., Siero, J.C.W. (2022). Neuronal Models for EEG–fMRI Integration. In: Mulert, C., Lemieux, L. (eds) EEG - fMRI. Springer, Cham. https://doi.org/10.1007/978-3-031-07121-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07121-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07120-1

  • Online ISBN: 978-3-031-07121-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics