Skip to main content

EEG–fMRI in Adults with Focal Epilepsy

  • Chapter
  • First Online:
EEG - fMRI

Abstract

The application of EEG-correlated fMRI (EEG–fMRI) in adults with focal epilepsy has two principal aims: to improve our understanding of the generators of epileptiform activity and to improve the surgical treatment of epilepsy. EEG–fMRI has been used to study scalp interictal epileptiform discharges (IEDs). The relative abundance of IEDs (and the lack of associated clinical manifestations) drove the initial development of EEG–fMRI with a view to studying the fMRI signal changes associated with epileptic activity (Hill et al., Neurology 45:1942–1943 1995; Ives et al., Electroencephalogr Clin Neurophysiol 87:417–420, 1993; Krakow et al., Brain 122(9):1679–1688, 1999b). Analysis of scalp IEDs is not without its problems. Scalp IEDs may reflect propagated activity rather than the source. Furthermore, even when the scalp IEDs are representative of the source or sources, there are no unique solutions to the generator location problem, and such solutions depend upon critical assumptions (such as the number of sources). EEG–fMRI is free from such assumptions and may therefore give a more accurate indication of the source or sources of IEDs. fMRI had been employed to study the haemodynamic correlates of seizures, relying on visual observation of the patient during seizure for interpretation of the BOLD signal changes. Ictal BOLD changes are, however, generally widespread, long lasting and difficult to interpret, particularly without concurrent EEG (Detre et al., Ann Neurol 38:618–624, 1995; Jackson et al., Neurology 54:524–527, 1994). Simultaneous EEG-fMRI can address this issue to better explain the haemodymaic changes at whole brain level for particular electrophysiological activity on EEG during seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu P, Ribeiro M, Forni A, Pires I, Sousa G (2005) Writing epilepsy: a neurophysiological, neuropsychological and neuroimaging study. Epilepsy Behav 6:463–466

    Article  Google Scholar 

  • Aghakhani Y, Bagshaw AP, Benar CG et al (2004) fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain 127:1127–1144

    Article  CAS  Google Scholar 

  • Aghakhani Y, Beers CA, Pittman DJ, Gaxiola-Valdez I, Goodyear BG, Federico P (2015) Co-localization between the BOLD response and epileptiform discharges recorded by simultaneous intracranial EEG-fMRI at 3 T. Neuroimage Clin 7:755–763

    Article  Google Scholar 

  • Aguirre GK, Zarahn E, D'esposito M (1998) The variability of human, BOLD hemodynamic responses. NeuroImage 8:360–369

    Article  CAS  Google Scholar 

  • Alarcon G, Garcia Seoane JJ, Binnie CD et al (1997) Origin and propagation of interictal discharges in the acute electrocorticogram. Implications for pathophysiology and surgical treatment of temporal lobe epilepsy. Brain 120(12):2259–2282

    Article  Google Scholar 

  • Al-Asmi A, Benar CG, Gross DW et al (2003) fMRI activation in continuous and spike-triggered EEG-fMRI studies of epileptic spikes. Epilepsia 44:1328–1339

    Article  Google Scholar 

  • Barbarosie M, Avoli M (1997) CA3-driven hippocampal-entorhinal loop controls rather than sustains in vitro limbic seizures. J Neurosci 17:9308–9314

    Article  CAS  Google Scholar 

  • Bartolomei F, Wendling F, Regis J, Gavaret M, Guye M, Chauvel P (2004) Pre-ictal synchronicity in limbic networks of mesial temporal lobe epilepsy. Epilepsy Res 61:89–104

    Article  CAS  Google Scholar 

  • Benar C, Aghakhani Y, Wang Y et al (2003) Quality of EEG in simultaneous EEG-fMRI for epilepsy. Clin Neurophysiol 114:569–580

    Article  Google Scholar 

  • Benar CG, Grova C, Kobayashi E et al (2006) EEG-fMRI of epileptic spikes: concordance with EEG source localization and intracranial EEG. NeuroImage 30:1161–1170

    Article  Google Scholar 

  • Blume WT (2001) Current trends in electroencephalography. Curr Opin Neurol 14:193–197

    Article  CAS  Google Scholar 

  • Blume WT, Borghesi JL, Lemieux JF (1993) Interictal indices of temporal seizure origin. Ann Neurol 34:703–709

    Article  CAS  Google Scholar 

  • Blume WT, Holloway GM, Wiebe S (2001a) Temporal epileptogenesis: localizing value of scalp and subdural interictal and ictal EEG data. Epilepsia 42:508–514

    Article  CAS  Google Scholar 

  • Blume WT, Luders HO, Mizrahi E, Tassinari C, van Emde BW, Engel J Jr (2001b) Glossary of descriptive terminology for ictal semiology: report of the ILAE task force on classification and terminology. Epilepsia 42:1212–1218

    Article  CAS  Google Scholar 

  • Boucousis SM, Beers CA, Cunningham CJ et al (2012) Feasibility of an intracranial EEG-fMRI protocol at 3T: risk assessment and image quality. NeuroImage 63:1237–1248

    Article  Google Scholar 

  • Cardinale F, Rizzi M, Vignati E et al (2019) Stereoelectroencephalography: retrospective analysis of 742 procedures in a single centre. Brain 142:2688–2704

    Article  Google Scholar 

  • Carmichael DW, Hamandi K, Laufs H, Duncan JS, Thomas DL, Lemieux L (2008) An investigation of the relationship between BOLD and perfusion signal changes during epileptic generalised spike wave activity. Magn Reson Imaging 26:870–873

    Article  Google Scholar 

  • Carmichael DW, Thornton JS, Rodionov R et al (2010) Feasibility of simultaneous intracranial EEG-fMRI in humans: a safety study. NeuroImage 49:379–390

    Article  Google Scholar 

  • Carmichael DW, Vulliemoz S, Rodionov R, Thornton JS, McEvoy AW, Lemieux L (2012) Simultaneous intracranial EEG-fMRI in humans: protocol considerations and data quality. NeuroImage 63:301–309

    Article  CAS  Google Scholar 

  • Chassagnon S, Hawko CS, Bernasconi A, Gotman J, Dubeau F (2009) Coexistence of symptomatic focal and absence seizures: video-EEG and EEG-fMRI evidence of overlapping but independent epileptogenic networks. Epilepsia 50:1821–1826

    Article  Google Scholar 

  • Chaudhary UJ, Carmichael DW, Rodionov R et al (2012a) Mapping preictal and ictal haemodynamic networks using video-electroencephalography and functional imaging. Brain 135:3645–3663

    Article  Google Scholar 

  • Chaudhary UJ, Carmichael DW, Rodionov R et al (2012b) Conference Abstract: Mapping the irritative zone using simultaneous intracranial EEG-fMRI and comparison with postsurgical outcome. Epilepsia 53:14

    Google Scholar 

  • Chaudhary UJ, Centeno M, Carmichael DW, Diehl B, Walker MC, Duncan JS, Lemieux L (2021) Mapping Epileptic Networks Using Simultaneous Intracranial EEG-fMRI. Frontiers in Neurology 12693504. https://doi.org/10.3389/fneur.2021.693504

  • Chaudhary UJ, Duncan JS, Lemieux L (2013) Mapping hemodynamic correlates of seizures using fMRI: a review. Hum Brain Mapp 34:447–466

    Article  Google Scholar 

  • Chaudhary UJ, Perani S, Carmichael D et al (2014) Conference Abstract: Epileptic network using scalp and intracranial EEG-fMRI and postsurgical outcome. Epilepsy Curr 14:88–89

    Google Scholar 

  • Chaudhary UJ, Centeno M, Thornton RC et al (2016) Mapping human preictal and ictal haemodynamic networks using simultaneous intracranial EEG-fMRI. Neuroimage Clin 11:486–493

    Article  Google Scholar 

  • Coan AC, Chaudhary UJ, Frederic G et al (2016) EEG-fMRI in the presurgical evaluation of temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 87:642–649

    Article  Google Scholar 

  • Cunningham CB, Goodyear BG, Badawy R et al (2012) Intracranial EEG-fMRI analysis of focal epileptiform discharges in humans. Epilepsia 53:1636–1648

    Article  Google Scholar 

  • de Curtis M, Avanzini G (2001) Interictal spikes in focal epileptogenesis. Prog Neurobiol 63:541–567

    Article  Google Scholar 

  • Detre JA, Sirven JI, Alsop DC, O'Connor MJ, French JA (1995) Localization of subclinical ictal activity by functional magnetic resonance imaging: correlation with invasive monitoring. Ann Neurol 38:618–624

    Article  CAS  Google Scholar 

  • Di Bonaventura C, Carnfi M, Vaudano AE et al (2006a) Ictal hemodynamic changes in late-onset rasmussen encephalitis. Ann Neurol 59:432–433

    Article  Google Scholar 

  • Di Bonaventura C, Vaudano AE, Carni M et al (2006b) EEG/fMRI study of ictal and interictal epileptic activity: methodological issues and future perspectives in clinical practice. Epilepsia 47(5):52–58

    Article  Google Scholar 

  • Diekmann V, Hoppner AC (2014) Cortical network dysfunction in musicogenic epilepsy reflecting the role of snowballing emotional processes in seizure generation: an fMRI-EEG study. Epileptic Disord 16:31–44

    Article  Google Scholar 

  • Donaire A, Bargallo N, Falcon C et al (2009a) Identifying the structures involved in seizure generation using sequential analysis of ictal-fMRI data. NeuroImage 47:173–183

    Article  Google Scholar 

  • Donaire A, Falcon C, Carreno M et al (2009b) Sequential analysis of fMRI images: a new approach to study human epileptic networks. Epilepsia 50:2526–2537

    Article  Google Scholar 

  • Donaire A, Capdevila A, Carreno M et al (2013) Identifying the cortical substrates of interictal epileptiform activity in patients with extratemporal epilepsy: an EEG-fMRI sequential analysis and FDG-PET study. Epilepsia 54:678–690

    Article  Google Scholar 

  • Duncan JS (2007) Epilepsy surgery. Clin Med 7:137–142

    Article  Google Scholar 

  • Duncan JS (2011) Selecting patients for epilepsy surgery: synthesis of data. Epilepsy Behav 20:230–232

    Article  Google Scholar 

  • Federico P, Abbott DF, Briellmann RS, Harvey AS, Jackson GD (2005a) Functional MRI of the pre-ictal state. Brain 128:1811–1817

    Article  Google Scholar 

  • Federico P, Archer JS, Abbott DF, Jackson GD (2005b) Cortical/subcortical BOLD changes associated with epileptic discharges: an EEG-fMRI study at 3 T. Neurology 64:1125–1130

    Article  Google Scholar 

  • Fernandez S, Donaire A, Maestro I et al (2011) Functional neuroimaging in startle epilepsy: involvement of a mesial frontoparietal network. Epilepsia 52:1725–1732

    Article  Google Scholar 

  • Flanagan D, Badawy RA, Jackson GD (2014) EEG-fMRI in focal epilepsy: local activation and regional networks. Clin Neurophysiol 125:21–31

    Article  CAS  Google Scholar 

  • Garganis K, Kokkinos V, Zountsas B (2013) EEG-fMRI findings in late seizure recurrence following temporal lobectomy: a possible contribution of area tempestas. Epilepsy Behav Case Rep 1:157–160

    Article  Google Scholar 

  • Gholipour A, Kehtarnavaz N, Briggs R, Devous M, Gopinath K (2007) Brain functional localization: a survey of image registration techniques. IEEE Trans Med Imaging 26:427–451

    Article  Google Scholar 

  • Gholipour A, Kehtarnavaz N, Briggs RW et al (2008a) Validation of non-rigid registration between functional and anatomical magnetic resonance brain images. IEEE Trans Biomed Eng 55:563–571

    Article  Google Scholar 

  • Gholipour A, Kehtarnavaz N, Gopinath K, Briggs R, Panahi I (2008b) Average field map image template for Echo-Planar image analysis. Conf Proc IEEE Eng Med Biol Soc 2008:94–97

    Google Scholar 

  • Gnatkovsky V, Librizzi L, Trombin F (2008) Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro. Ann Neurol 64:674–686

    Article  Google Scholar 

  • Gotman J, Grova C, Bagshaw A, Kobayashi E, Aghakhani Y, Dubeau F (2005) Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci U S A 102:15236–15240

    Article  CAS  Google Scholar 

  • Gregory RP, Oates T, Merry RT (1993) Electroencephalogram epileptiform abnormalities in candidates for aircrew training. Electroencephalogr Clin Neurophysiol 86:75–77

    Article  CAS  Google Scholar 

  • Grouiller F, Vercueil L, Krainik A, Segebarth C, Kahane P, David O (2010) Characterization of the hemodynamic modes associated with interictal epileptic activity using a deformable model-based analysis of combined EEG and functional MRI recordings. Hum Brain Mapp 31:1157–1173

    Google Scholar 

  • Grouiller F, Thornton RC, Groening K et al (2011) With or without spikes: localization of focal epileptic activity by simultaneous electroencephalography and functional magnetic resonance imaging. Brain 134:2867–2886

    Article  Google Scholar 

  • Hajnal JV, Myers R, Oatridge A, Schwieso JE, Young IR, Bydder GM (1994) Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn Reson Med 31:283–291

    Article  CAS  Google Scholar 

  • Hamandi K, Salek-Haddadi A, Fish DR, Lemieux L (2004) EEG/functional MRI in epilepsy: the queen square experience. J Clin Neurophysiol 21:241–248

    Article  Google Scholar 

  • Hamandi K, Salek-Haddadi A, Laufs H et al (2006) EEG-fMRI of idiopathic and secondarily generalized epilepsies. NeuroImage 31:1700–1710

    Article  Google Scholar 

  • Herrendorf G, Steinhoff BJ, Kolle R et al (2000) Dipole-source analysis in a realistic head model in patients with focal epilepsy. Epilepsia 41:71–80

    Article  CAS  Google Scholar 

  • Hill RA, Chiappa KH, Huang-Hellinger F, Jenkins BG (1995) EEG during MR imaging: differentiation of movement artifact from paroxysmal cortical activity. Neurology 45:1942–1943

    Article  CAS  Google Scholar 

  • Huberfeld G, Menendez P, Pallud J et al (2011) Glutamatergic pre-ictal discharges emerge at the transition to seizure in human epilepsy. Nat Neurosci 14:627–634

    Article  CAS  Google Scholar 

  • Isnard J, Taussig D, Bartolomei F et al (2018) French guidelines on stereoelectroencephalography (SEEG). Neurophysiol Clin 48:5–13

    Article  Google Scholar 

  • Ives JR, Warach S, Schmitt F, Edelman RR, Schomer DL (1993) Monitoring the patient’s EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol 87:417–420

    Article  CAS  Google Scholar 

  • Jackson GD, Connelly A, Cross JH, Gordon I, Gadian DG (1994) Functional magnetic resonance imaging of focal seizures. Neurology 54:524–527

    Google Scholar 

  • Jacobs J, Rohr A, Moeller F et al (2008) Evaluation of epileptogenic networks in children with tuberous sclerosis complex using EEG-fMRI. Epilepsia 49:816–825

    Article  Google Scholar 

  • Jacobs J, LeVan P, Moeller F et al (2009) Hemodynamic changes preceding the interictal EEG spike in patients with focal epilepsy investigated using simultaneous EEG-fMRI. NeuroImage 45:1220–1231

    Article  Google Scholar 

  • Jansen M, White TP, Mullinger KJ et al (2012) Motion-related artefacts in EEG predict neuronally plausible patterns of activation in fMRI data. NeuroImage 59:261–270

    Article  Google Scholar 

  • Josephs O, Turner R, Friston K (1997) Event-related f MRI. Hum Brain Mapp 5:243–248

    Article  CAS  Google Scholar 

  • Kazemi NJ, So EL, Mosewich RK et al (1997) Resection of frontal encephalomalacias for intractable epilepsy: outcome and prognostic factors. Epilepsia 38:670–677

    Article  CAS  Google Scholar 

  • Khoo HM, Hao Y et al (2017) The hemodynamic response to interictal epileptic discharges localizes the seizure-onset zone. Epilepsia 58:811–823

    Article  CAS  Google Scholar 

  • King D, Spencer S (1995) Invasive electroencephalography in mesial temporal lobe epilepsy. J Clin Neurophysiol 12:32–45

    CAS  Google Scholar 

  • Kobayashi E, Bagshaw AP, Jansen A et al (2005) Intrinsic epileptogenicity in polymicrogyric cortex suggested by EEG-fMRI BOLD responses. Neurology 64:1263–1266

    Article  CAS  Google Scholar 

  • Kobayashi E, Bagshaw AP, Benar CG et al (2006a) Temporal and extratemporal BOLD responses to temporal lobe interictal spikes. Epilepsia 47:343–354

    Article  Google Scholar 

  • Kobayashi E, Bagshaw AP, Grova C, Gotman J, Dubeau F (2006b) Grey matter heterotopia: what EEG-fMRI can tell us about epileptogenicity of neuronal migration disorders. Brain 129:366–374

    Article  Google Scholar 

  • Kobayashi E, Hawco CS, Grova C, Dubeau F, Gotman J (2006c) Widespread and intense BOLD changes during brief focal electrographic seizures. Neurology 66:1049–1055

    Article  CAS  Google Scholar 

  • Kobayashi E, Bagshaw AP, Gotman J, Dubeau F (2007) Metabolic correlates of epileptic spikes in cerebral cavernous angiomas. Epilepsy Res 73:98–103

    Article  Google Scholar 

  • Kowalczyk MA, Omidvarnia A, Abbott DF, Tailby C, Vaughan DN, Jackson GD (2020) Clinical benefit of presurgical EEG-fMRI in difficult-to-localize focal epilepsy: a single-institution retrospective review. Epilepsia 61:49–60

    Article  Google Scholar 

  • Krakow K, Wieshmann UC, Woermann FG et al (1999a) Multimodal MR imaging: functional, diffusion tensor, and chemical shift imaging in a patient with localization-related epilepsy. Epilepsia 40:1459–1462

    Article  CAS  Google Scholar 

  • Krakow K, Woermann FG, Symms MR et al (1999b) EEG-triggered functional MRI of interictal epileptiform activity in patients with partial seizures. Brain 122(9):1679–1688

    Article  Google Scholar 

  • Krings T, Topper R, Reinges MH et al (2000) Hemodynamic changes in simple partial epilepsy: a functional MRI study. Neurology 54:524–527

    Article  CAS  Google Scholar 

  • Lai S, Hopkins AL, Haacke EM et al (1993) Identification of vascular structures as a major source of signal contrast in high resolution 2D and 3D functional activation imaging of the motor cortex at 1.5T: preliminary results. Magn Reson Med 30:387–392

    Article  CAS  Google Scholar 

  • Laufs H, Hamandi K, Walker MC et al (2006) EEG-fMRI mapping of asymmetrical delta activity in a patient with refractory epilepsy is concordant with the epileptogenic region determined by intracranial EEG. Magn Reson Imaging 24:367–371

    Article  Google Scholar 

  • Laufs H, Hamandi K, Salek-Haddadi A, Kleinschmidt AK, Duncan JS, Lemieux L (2007) Temporal lobe interictal epileptic discharges affect cerebral activity in “default mode” brain regions. Hum Brain Mapp 28:1023–1032

    Article  Google Scholar 

  • Laufs H, Richardson MP, Salek-Haddadi A et al (2011) Converging PET and fMRI evidence for a common area involved in human focal epilepsies. Neurology 77:904–910

    Article  CAS  Google Scholar 

  • Lazeyras F, Blanke O, Perrig S et al (2000a) EEG-triggered functional MRI in patients with pharmacoresistant epilepsy. J Magn Reson Imaging 12:177–185

    Article  CAS  Google Scholar 

  • Lazeyras F, Blanke O, Zimine I, Delavelle J, Perrig SH, Seeck M (2000b) MRI, (1)H-MRS, and functional MRI during and after prolonged nonconvulsive seizure activity. Neurology 55:1677–1682

    Article  CAS  Google Scholar 

  • Lemieux L, Salek-Haddadi A, Josephs O et al (2001) Event-related fMRI with simultaneous and continuous EEG: description of the method and initial case report. NeuroImage 14:780–787

    Article  CAS  Google Scholar 

  • Lemieux L, Salek-Haddadi A, Lund TE, Laufs H, Carmichael D (2007) Modelling large motion events in fMRI studies of patients with epilepsy. Magn Reson Imaging 25:894–901

    Article  Google Scholar 

  • Lemieux L, Laufs H, Carmichael D, Paul JS, Walker MC, Duncan JS (2008) Noncanonical spike-related BOLD responses in focal epilepsy. Hum Brain Mapp 29:329–345

    Article  Google Scholar 

  • LeVan P, Tyvaert L, Moeller F, Gotman J (2010) Independent component analysis reveals dynamic ictal BOLD responses in EEG-fMRI data from focal epilepsy patients. NeuroImage 49:366–378

    Article  Google Scholar 

  • Liston AD, de Munck JC, Hamandi K et al (2006) Analysis of EEG-fMRI data in focal epilepsy based on automated spike classification and Signal Space Projection. NeuroImage 31:1015–1024

    Article  Google Scholar 

  • Liu Y, Yang T, Yang X et al (2008) EEG-fMRI study of the interictal epileptic activity in patients with partial epilepsy. J Neurol Sci 268:117–123

    Article  Google Scholar 

  • Logothetis NK, Pfeuffer J (2004) On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging 22:1517–1531

    Article  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  CAS  Google Scholar 

  • Lopes R, Lina JM, Fahoum F, Gotman J (2012) Detection of epileptic activity in fMRI without recording the EEG. NeuroImage 60:1867–1879

    Article  CAS  Google Scholar 

  • Luders H, Comair YG (2000) Epilepsy surgery. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Luders HO, Najm I, Nair D, Widdess-Walsh P, Bingman W (2006) The epileptogenic zone: general principles. Epileptic Disord 8(2):1–9

    Google Scholar 

  • Lund TE, Norgaard MD, Rostrup E, Rowe JB, Paulson OB (2005) Motion or activity: their role in intra- and inter-subject variation in fMRI. NeuroImage 26:960–964

    Article  Google Scholar 

  • Maclaren J, Herbst M, Speck O, Zaitsev M (2013) Prospective motion correction in brain imaging: a review. Magn Reson Med 69:621–636

    Article  Google Scholar 

  • Markoula S, Chaudhary UJ, Perani S et al (2018) The impact of mapping interictal discharges using EEG-fMRI on the epilepsy presurgical clinical decision making process: a prospective study. Seizure 61:30–37

    Article  Google Scholar 

  • Marrosu F, Barberini L, Puligheddu M et al (2009) Combined EEG/fMRI recording in musicogenic epilepsy. Epilepsy Res 84:77–81

    Article  Google Scholar 

  • Marsan CA, Zivin LS (1970) Factors related to the occurrence of typical paroxysmal abnormalities in the EEG records of epileptic patients. Epilepsia 11:361–381

    Article  CAS  Google Scholar 

  • Matsumoto H, Marsan CA (1964) Cortical cellular phenomena in experimental epilepsy: interictal manifestations. Exp Neurol 9:286–304

    Article  CAS  Google Scholar 

  • Maziero D, Velasco TR, Hunt N et al (2016) Towards motion insensitive EEG-fMRI: correcting motion-induced voltages and gradient artefact instability in EEG using an fMRI prospective motion correction (PMC) system. NeuroImage 138:13–27

    Article  Google Scholar 

  • McCormick DA, Contreras D (2001) On the cellular and network bases of epileptic seizures. Annu Rev Physiol 63:815–846

    Article  CAS  Google Scholar 

  • McGonigal A, Bartolomei F, Regis J et al (2007) Stereoelectroencephalography in presurgical assessment of MRI-negative epilepsy. Brain 130:3169–3183

    Article  Google Scholar 

  • Moore CI, Cao R (2008) The hemo-neural hypothesis: on the role of blood flow in information processing. J Neurophysiol 99:2035–2047

    Article  Google Scholar 

  • Morano A, Carni M, Casciato S et al (2017) Ictal EEG/fMRI study of vertiginous seizures. Epilepsy Behav 68:51–56

    Article  Google Scholar 

  • Morocz IA, Karni A, Haut S, Lantos G, Liu G (2003) fMRI of triggerable aurae in musicogenic epilepsy. Neurology 60:705–709

    Article  CAS  Google Scholar 

  • Mullinger KJ, Yan WX, Bowtell R (2011) Reducing the gradient artefact in simultaneous EEG-fMRI by adjusting the subject’s axial position. NeuroImage 54:1942–1950

    Article  Google Scholar 

  • Northoff G, Walter M, Schulte RF et al (2007) GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nat Neurosci 10:1515–1517

    Article  CAS  Google Scholar 

  • Palmer CA, Geyer JD, Keating JM et al (1999) Rasmussen’s encephalitis with concomitant cortical dysplasia: the role of GluR3. Epilepsia 40:242–247

    Article  CAS  Google Scholar 

  • Pasley BN, Inglis BA, Freeman RD (2007) Analysis of oxygen metabolism implies a neural origin for the negative BOLD response in human visual cortex. NeuroImage 36:269–276

    Article  Google Scholar 

  • Pittau F, Dubeau F, Gotman J (2012) Contribution of EEG/fMRI to the definition of the epileptic focus. Neurology 78:1479–1487

    Article  Google Scholar 

  • Pittau F, Fahoum F, Zelmann R, Dubeau F, Gotman J (2013) Negative BOLD response to interictal epileptic discharges in focal epilepsy. Brain Topogr 26:627–640

    Article  Google Scholar 

  • Pittau F, Ferri L, Fahoum F, Dubeau F, Gotman J (2017) Contributions of EEG-fMRI to assessing the epileptogenicity of focal cortical dysplasia. Front Comput Neurosci 11:8

    Article  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682

    Article  CAS  Google Scholar 

  • Ray A, Tao JX, Hawes-Ebersole SM, Ebersole JS (2007) Localizing value of scalp EEG spikes: a simultaneous scalp and intracranial study. Clin Neurophysiol 118:69–79

    Article  Google Scholar 

  • Rodionov R, De MF, Laufs H et al (2007) Independent component analysis of interictal fMRI in focal epilepsy: comparison with general linear model-based EEG-correlated fMRI. NeuroImage 38:488–500

    Article  CAS  Google Scholar 

  • Rosenow F, Luders H (2001) Presurgical evaluation of epilepsy. Brain 124:1683–1700

    Article  CAS  Google Scholar 

  • Sakatani K, Murata Y, Fujiwara N et al (2007) Comparison of blood-oxygen-level-dependent functional magnetic resonance imaging and near-infrared spectroscopy recording during functional brain activation in patients with stroke and brain tumors. J Biomed Opt 12:062110

    Article  Google Scholar 

  • Salek-Haddadi A, Merschhemke M, Lemieux L, Fish DR (2002) Simultaneous EEG-Correlated Ictal fMRI. NeuroImage 16:32–40

    Article  Google Scholar 

  • Salek-Haddadi A, Friston KJ, Lemieux L, Fish DR (2003a) Studying spontaneous EEG activity with fMRI. Brain Res Brain Res Rev 43:110–133

    Article  CAS  Google Scholar 

  • Salek-Haddadi A, Lemieux L, Merschhemke M, Diehl B, Allen PJ, Fish DR (2003b) EEG quality during simultaneous functional MRI of interictal epileptiform discharges. Magn Reson Imaging 21:1159–1166

    Article  Google Scholar 

  • Salek-Haddadi A, Lemieux L, Merschhemke M, Friston KJ, Duncan JS, Fish DR (2003c) Functional magnetic resonance imaging of human absence seizures. Ann Neurol 53:663–667

    Article  Google Scholar 

  • Salek-Haddadi A, Diehl B, Hamandi K et al (2006) Hemodynamic correlates of epileptiform discharges: an EEG-fMRI study of 63 patients with focal epilepsy. Brain Res 1088:148–166

    Article  CAS  Google Scholar 

  • Salek-Haddadi A, Mayer T, Hamandi K et al (2009) Imaging seizure activity: a combined EEG/EMG-fMRI study in reading epilepsy. Epilepsia 50:256–264

    Article  Google Scholar 

  • Schridde U, Khubchandani M, Motelow JE, Sanganahalli BG, Hyder F, Blumenfeld H (2008) Negative BOLD with large increases in neuronal activity. Cereb Cortex 18:1814–1827

    Article  Google Scholar 

  • Schulz R, Luders HO, Hoppe M, Tuxhorn I, May T, Ebner A (2000) Interictal EEG and ictal scalp EEG propagation are highly predictive of surgical outcome in mesial temporal lobe epilepsy. Epilepsia 41:564–570

    Article  CAS  Google Scholar 

  • Schwartz TH, Bazil CW, Walczak TS, Chan S, Pedley TA, Goodman RR (1997) The predictive value of intraoperative electrocorticography in resections for limbic epilepsy associated with mesial temporal sclerosis. Neurosurgery 40:302–309

    Article  CAS  Google Scholar 

  • Schwartz TH, Hong SB, Bagshaw AP, Chauvel P, Benar CG (2011) Preictal changes in cerebral haemodynamics: review of findings and insights from intracerebral EEG. Epilepsy Res 97:252–266

    Article  Google Scholar 

  • Shmuel A, Yacoub E, Pfeuffer J et al (2002) Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 36:1195–1210

    Article  CAS  Google Scholar 

  • Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9:569–577

    Article  CAS  Google Scholar 

  • Shulman RG, Rothman DL, Hyder F (2007) A BOLD search for baseline. NeuroImage 36:277–281

    Article  Google Scholar 

  • Sierra-Marcos A, Maestro I, Falcon C et al (2013) Ictal EEG-fMRI in localization of epileptogenic area in patients with refractory neocortical focal epilepsy. Epilepsia 54:1688–1698

    Article  Google Scholar 

  • Stefan H, Hummel C, Scheler G et al (2003) Magnetic brain source imaging of focal epileptic activity: a synopsis of 455 cases. Brain 126:2396–2405

    Article  CAS  Google Scholar 

  • Szaflarski JP, DiFrancesco M, Hirschauer T et al (2010) Cortical and subcortical contributions to absence seizure onset examined with EEG/fMRI. Epilepsy Behav 18:404–413

    Article  Google Scholar 

  • Tao JX, Ray A, Hawes-Ebersole S, Ebersole JS (2005) Intracranial EEG substrates of scalp EEG interictal spikes. Epilepsia 46:669–676

    Article  Google Scholar 

  • Tao JX, Baldwin M, Ray A, Hawes-Ebersole S, Ebersole JS (2007) The impact of cerebral source area and synchrony on recording scalp electroencephalography ictal patterns. Epilepsia 48:2167–2176

    Article  Google Scholar 

  • Tenney JR, Kadis DS, Agler W et al (2018) Ictal connectivity in childhood absence epilepsy: associations with outcome. Epilepsia 59:971–981

    Article  Google Scholar 

  • Thornton R, Laufs H, Rodionov R et al (2010a) EEG correlated functional MRI and postoperative outcome in focal epilepsy. J Neurol Neurosurg Psychiatry 81:922–927

    Article  Google Scholar 

  • Thornton RC, Rodionov R, Laufs H et al (2010b) Imaging haemodynamic changes related to seizures: comparison of EEG-based general linear model, independent component analysis of fMRI and intracranial EEG. NeuroImage 53:196–205

    Article  CAS  Google Scholar 

  • Thornton R, Vulliemoz S, Rodionov R et al (2011) Epileptic networks in focal cortical dysplasia revealed using electroencephalography-functional magnetic resonance imaging. Ann Neurol 70:822–837

    Article  Google Scholar 

  • Todd N, Josephs O, Callaghan MF, Lutti A, Weiskopf N (2015) Prospective motion correction of 3D echo-planar imaging data for functional MRI using optical tracking. NeuroImage 113:1–12

    Article  Google Scholar 

  • Trombin F, Gnatkovsky V, de CM. (2011) Changes in action potential features during focal seizure discharges in the entorhinal cortex of the in vitro isolated guinea pig brain. J Neurophysiol 106:1411–1423

    Article  CAS  Google Scholar 

  • Truccolo W, Donoghue JA, Hochberg LR et al (2011) Single-neuron dynamics in human focal epilepsy. Nat Neurosci 14:635–641

    Article  CAS  Google Scholar 

  • Tyvaert L, Hawco C, Kobayashi E, LeVan P, Dubeau F, Gotman J (2008) Different structures involved during ictal and interictal epileptic activity in malformations of cortical development: an EEG-fMRI study. Brain 131:2042–2060

    Article  CAS  Google Scholar 

  • Tyvaert L, LeVan P, Dubeau F, Gotman J (2009) Noninvasive dynamic imaging of seizures in epileptic patients. Hum Brain Mapp 30:3993–4011

    Article  Google Scholar 

  • Usami K, Matsumoto R, Sawamoto N et al (2016) Epileptic network of hypothalamic hamartoma: an EEG-fMRI study. Epilepsy Res 125:1–9

    Article  Google Scholar 

  • van Houdt PJ, de Munck JC, Leijten FSS et al (2013) EEG-fMRI correlation patterns in the presurgical evaluation of focal epilepsy: a comparison with electrocorticographic data and surgical outcome measures. NeuroImage 75:238–248

    Article  Google Scholar 

  • van Houdt PJ, Ossenblok PP, Colon AJ et al (2015) Are epilepsy-related fMRI components dependent on the presence of interictal epileptic discharges in scalp EEG? Brain Topogr 28:606–618

    Article  Google Scholar 

  • Vaudano AE, Laufs H, Kiebel SJ et al (2009) Causal hierarchy within the thalamo-cortical network in spike and wave discharges. PLoS One 4:e6475

    Article  Google Scholar 

  • Vaudano AE, Carmichael DW, Salek-Haddadi A et al (2012) Networks involved in seizure initiation. A reading epilepsy case studied with EEG-fMRI and MEG. Neurology 79:249–253

    Article  Google Scholar 

  • Vaudano AE, Avanzini P, Tassi L et al (2013) Causality within the epileptic network: an EEG-fMRI study validated by intracranial EEG. Front Neurol 4:185

    Article  Google Scholar 

  • Vaudano AE, Ruggieri A, Vignoli A et al (2014) Epilepsy-related brain networks in ring chromosome 20 syndrome: an EEG-fMRI study. Epilepsia 55:403–413

    Article  Google Scholar 

  • Vaudano AE, Olivotto S, Ruggieri A et al (2017) Brain correlates of spike and wave discharges in GLUT1 deficiency syndrome. Neuroimage Clin 13:446–454

    Article  Google Scholar 

  • Vulliemoz S, Carmichael DW, Rosenkranz K et al (2011) Simultaneous intracranial EEG and fMRI of interictal epileptic discharges in humans. NeuroImage 54:182–190

    Article  Google Scholar 

  • Watanabe S, An D, Safi-Harb M, Dubeau F, Gotman J (2014) Hemodynamic response function (HRF) in epilepsy patients with hippocampal sclerosis and focal cortical dysplasia. Brain Topogr 27:613–619

    Article  Google Scholar 

  • Wendling F, Hernandez A, Bellanger JJ, Chauvel P, Bartolomei F (2005) Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG. J Clin Neurophysiol 22:343–356

    Google Scholar 

  • Widdess-Walsh P, Jeha L, Nair D, Kotagal P, Bingaman W, Najm I (2007) Subdural electrode analysis in focal cortical dysplasia: predictors of surgical outcome. Neurology 69:660–667

    Article  CAS  Google Scholar 

  • Zhang Z, Liao W, Wang Z et al (2014) Epileptic discharges specifically affect intrinsic connectivity networks during absence seizures. J Neurol Sci 336:138–145

    Article  Google Scholar 

  • Zhao M, Suh M, Ma H, Perry C, Geneslaw A, Schwartz TH (2007) Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy. Epilepsia 48:2059–2067

    Article  Google Scholar 

  • Zijlmans M, Huiskamp G, Hersevoort M, Seppenwoolde JH, van Huffelen AC, Leijten FS (2007) EEG-fMRI in the preoperative work-up for epilepsy surgery. Brain 130:2343–2353

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Lemieux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaudhary, U.J., Walker, M.C., Lemieux, L. (2022). EEG–fMRI in Adults with Focal Epilepsy. In: Mulert, C., Lemieux, L. (eds) EEG - fMRI. Springer, Cham. https://doi.org/10.1007/978-3-031-07121-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07121-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07120-1

  • Online ISBN: 978-3-031-07121-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics