Skip to main content

Image Quality Issues

  • Chapter
  • First Online:
EEG - fMRI
  • 1178 Accesses

Abstract

In this chapter, we first describe the main MRI data acquisition methods and some more recent advances. The requirement of a fMRI pulse sequence is BOLD sensitivity, which means predominantly T2*-weighted sequences such as gradient echo-echo-planar imaging (GE-EPI), although spin echo sequences such as spin echo-EPI (SE-EPI) can also be used (Bandettini et al., NMR Biomed 7:12–20, 1994; Norris et al., Neuroimage 15:719–726, 2002; Schmidt et al., Neuroimage 26:852–859, 2005). We therefore describe the main limitations of GE-fMRI in terms of image artefacts (distortion, dropout, blurring and ghosting) highlighting potential enhancement of these problems that EEG equipment can introduce. Approaches to optimise image quality are then described in relation to these artefacts. Recent developments that have become increasingly popular are sequences that utilise ‘parallel imaging’ in the slice direction, where RF receiver coil spatial sensitivity is used to encode spatial position in addition to imaging gradients. This can either reduce the slice thickness while maintaining the TR to increase resolution while reducing through-slice dropout or be used to increase scan repetition rate (decrease TR). This approach has particular relevance at higher field strengths where signal dropout becomes more problematic. The dramatic reduction of the TR to increase fMRI signal sampling rates by an order of magnitude remains an approach where the benefits are unclear owing to signal loss and image quality degradation. However, where full sampling of physiological noise signals is required (particularly important for resting-state fMRI), it may confer net benefit. Nevertheless, the limitations of rapid signal loss where TRs fall below tissue T1s and noise enhancement from the poorly conditioned problem of separating signal aliased from many different slices make it likely that a modest reduction in TR using an SMS factor of 2–3 is optimal for many applications. Although not yet mainstream, 3D echo-planar imaging is being used increasingly, and as the technical challenges associated with segmented acquisition are solved by improved acquisition and reconstruction methods, this is likely to change over the coming years. fMRI is limited by its sensitivity to noise sources particularly motion and physiological noise, and these issues and methods for their mitigation are summarised. Lastly, there has been a notable increase in the application of multi-echo EPI which may allow for a much better separation between BOLD activity and physiological noise. In the last part of the chapter, we introduce and describe fMRI quality assurance methods that can be used to optimise imaging parameters and monitor performance during studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The transverse relaxation time including a contribution from slowly changing or constant background magnetic fields.

  2. 2.

    This assumes that the same coil is used for both signal excitation and reception. It is increasingly common for different coils to be used for each purpose, with each imposing a different pattern.

References

  • Ahn CB, Kim JH, Cho ZH (1986) High speed spiral scan echo planar imaging. IEEE Trans Med Imaging 5(1):2–5

    Article  CAS  Google Scholar 

  • Alfaro-Almagro F, Jenkinson M, Bangerter NK, Andersson JLR, Griffanti L, Douaud G, Smith SM (2018) Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. NeuroImage 166:400–424. https://doi.org/10.1016/j.neuroimage.2017.10.034

    Article  Google Scholar 

  • Arichi T, Whitehead K, Barone G, Pressler R, Padormo F, Edwards AD, Fabrizi L (2017) Localization of spontaneous bursting neuronal activity in the preterm human brain with simultaneous EEG-fMRI. elife 6:27841. https://doi.org/10.7554/eLife.27814

    Article  Google Scholar 

  • Ashburner J, Friston K (2004) Rigid body registration. In: Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Price CJ, Zeki S, Ashburner J, Penny W (eds) Human brain function. Elsevier, Amsterdam, pp 635–653

    Google Scholar 

  • Bandettini PA, Wong EC, Jesmanowicz A, Hinks RS, Hyde JS (1994) Spin-echo and gradient-echo EPI of human brain activation using BOLD contrast: a comparative study at 1.5 T. NMR Biomed 7:12–20

    Article  CAS  Google Scholar 

  • Baumann SB, Noll DC (1999) A modified electrode cap for EEG recordings in MRI scanners. Clin Neurophysiol 110:2189–2193

    Article  CAS  Google Scholar 

  • Behzadi Y, Restom K, Liau J, Liu TT (2007) A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37(1):90–101. https://doi.org/10.1016/j.neuroimage.2007.04.042

    Article  Google Scholar 

  • Benar C, Aghakhani Y, Wang Y, Izenberg A, Al Asmi A, Dubeau F, Gotman J (2003) Quality of EEG in simultaneous EEG–fMRI for epilepsy. Clin Neurophysiol 114:569–580

    Article  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    Article  CAS  Google Scholar 

  • Block KT, Frahm J (2005) Spiral imaging: a critical appraisal. J Magn Reson Imaging 21:657–668

    Article  Google Scholar 

  • Bonmassar G, Hadjikhani N, Ives JR, Hinton D, Belliveau JW (2001) Influence of EEG electrodes on the BOLD fMRI signal. Hum Brain Mapp 14:108–115

    Article  CAS  Google Scholar 

  • Bornert P, Jensen D (1994) Single-shot-double-echo EPI. Magn Reson Imaging 12:1033–1038

    Article  CAS  Google Scholar 

  • Bright MG, Tench CR, Murphy K (2017) Potential pitfalls when denoising resting state fMRI data using nuisance regression. NeuroImage 154:159–168. https://doi.org/10.1016/j.neuroimage.2016.12.027

    Article  Google Scholar 

  • Butts K, Riederer SJ, Ehman RL, Thompson RM, Jack CR (1994) Interleaved echo planar imaging on a standard MRI system. Magn Reson Med 31:67–72

    Article  CAS  Google Scholar 

  • Carlson JW, Minemura T (1993) Imaging time reduction through multiple receiver coil data acquisition and image reconstruction. Magn Reson Med 29:681–687

    Article  CAS  Google Scholar 

  • Carmichael DW, Priest AN, De Vita E, Ordidge RJ (2005) Common SENSE (sensitivity encoding using hardware common to all MR scanners): a new method for single-shot segmented echo planar imaging. Magn Reson Med 54:402–410

    Article  Google Scholar 

  • Chen NK, Wyrwicz AM (1999) Correction for EPI distortions using multi-echo gradient-echo imaging. Magn Reson Med 41:1206–1213

    Article  CAS  Google Scholar 

  • Cho ZH, Kim DJ, Kim YK (1988) Total inhomogeneity correction including chemical shifts and susceptibility by view angle tilting. Med Phys 15:7–11

    Article  CAS  Google Scholar 

  • Cohen MS, Weisskoff RM, Rzedzian RR, Kantor HL (1990) Sensory stimulation by time-varying magnetic fields. Magn Reson Med 14:409–414

    Article  CAS  Google Scholar 

  • Constable RT, Spencer DD (1999) Composite image formation in z-shimmed functional MR imaging. Magn Reson Med 42:110–117

    Article  CAS  Google Scholar 

  • Constantinides CD, Atalar E, McVeigh ER (1997) Signal-to-noise measurements in magnitude images from NMR phased arrays. Magn Reson Med 38:852–857

    Article  CAS  Google Scholar 

  • Cusack R, Russell B, Cox SM, De Panfilis C, Schwarzbauer C, Ansorge R (2005) An evaluation of the use of passive shimming to improve frontal sensitivity in fMRI. NeuroImage 24:82–91

    Article  Google Scholar 

  • Daniel AJ, Smith JA, Spencer GS, Jorge J, Bowtell R, Mullinger KJ (2019) Exploring the relative efficacy of motion artefact correction techniques for EEG data acquired during simultaneous fMRI. Hum Brain Mapp 40(2):578–596. https://doi.org/10.1002/hbm.24396

    Article  Google Scholar 

  • de Graaf RA, Nicolay K, Garwood M (1996) Single-shot, B1-insensitive slice selection with a gradient-modulated adiabatic pulse, BISS-8. Magn Reson Med 35:652–657

    Article  Google Scholar 

  • Debener S, Mullinger KJ, Niazy RK, Bowtell RW (2008) Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7 T static magnetic field strength. Int J Psychophysiol 67:189–199

    Article  Google Scholar 

  • Deichmann R, Josephs O, Hutton C, Corfield DR, Turner R (2002) Compensation of susceptibility-induced BOLD sensitivity losses in echo-planar fMRI imaging. NeuroImage 15:120–135

    Article  CAS  Google Scholar 

  • Deichmann R, Gottfried JA, Hutton C, Turner R (2003) Optimized EPI for fMRI studies of the orbitofrontal cortex. NeuroImage 19:430–441

    Article  CAS  Google Scholar 

  • Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26:375–385

    Article  Google Scholar 

  • Duong TQ, Yacoub E, Adriany G, Hu X, Ugurbil K, Vaughan JT, Merkle H, Kim SG (2002) High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T. Magn Reson Med 48:589–593

    Article  Google Scholar 

  • Duyn JH, Yang Y, Frank JA, van der Veen JW (1998) Simple correction method for k-space trajectory deviations in MRI. J Magn Reson 132:150–153

    Article  CAS  Google Scholar 

  • Feinberg DA, Oshio K (1994) Phase errors in multi-shot echo planar imaging. Magn Reson Med 32:535–539

    Article  CAS  Google Scholar 

  • Feinberg DA, Hale JD, Watts JC, Kaufman L, Mark A (1986) Halving MR imaging time by conjugation: demonstration at 3.5 kG. Radiology 161:527–531

    Article  CAS  Google Scholar 

  • Feinberg DA, Kiefer B, Johnson G (1995) GRASE improves spatial resolution in single shot imaging. Magn Reson Med 33:529–533

    Article  CAS  Google Scholar 

  • Feinberg DA, Reese TG, Wedeen VJ (2002) Simultaneous echo refocusing in EPI. Magn Reson Med 48:1–5

    Article  Google Scholar 

  • Fernandez-Seara MA, Wang Z, Wang J, Rao HY, Guenther M, Feinberg DA, Detre JA (2005) Continuous arterial spin labeling perfusion measurements using single shot 3D GRASE at 3 T. Magn Reson Med 54:1241–1247

    Article  Google Scholar 

  • Fischer H, Ladebeck R (1998) Echo-planar imaging image artefacts. In: Schmitt F, Stehling MK, Turner R (eds) Echo-planar imaging. Springer, Berlin, pp 180–200

    Google Scholar 

  • Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711

    Article  CAS  Google Scholar 

  • Frahm J, Merboldt KD, Hanicke W (1988) Direct FLASH MR imaging of magnetic field inhomogeneities by gradient compensation. Magn Reson Med 6:474–480

    Article  CAS  Google Scholar 

  • Frahm J, Merboldt KD, Hanicke W (1993) Functional MRI of human brain activation at high spatial resolution. Magn Reson Med 29:139–144

    Article  CAS  Google Scholar 

  • Friedman L, Glover GH (2006) Report on a multicenter fMRI quality assurance protocol. J Magn Reson Imaging 23:827–839

    Article  Google Scholar 

  • Friedman L, Stern H, Brown GG, Mathalon DH, Turner J, Glover GH, Gollub RL, Lauriello J, Lim KO, Cannon T, Greve DN, Bockholt HJ, Belger A, Mueller B, Doty MJ, He J, Wells W, Smyth P, Pieper S, Kim S, Kubicki M, Vangel M, Potkin SG (2007) Test-retest and between-site reliability in a multicenter fMRI study. Hum Brain Mapp 29:958–972

    Article  Google Scholar 

  • Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R (1996) Movement-related effects in fMRI time-series. Magn Reson Med 35:346–355

    Article  CAS  Google Scholar 

  • Gallichan D, Marques JP, Gruetter R (2016) Retrospective correction of involuntary microscopic head movement using highly accelerated fat image navigators (3D FatNavs) at 7T. Magn Reson Med 75(3):25670. https://doi.org/10.1002/mrm.25670

    Article  CAS  Google Scholar 

  • Garwood M, Delabarre L (2001) The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson 153:155–177

    Article  CAS  Google Scholar 

  • Garwood M, Ugurbil K, Rath AR, Bendall MR, Ross BD, Mitchell SL, Merkle H (1989) Magnetic resonance imaging with adiabatic pulses using a single surface coil for RF transmission and signal detection. Magn Reson Med 9:25–34

    Article  CAS  Google Scholar 

  • Glover GH, Law CS (2001) Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts. Magn Reson Med 46:515–522

    Article  CAS  Google Scholar 

  • Glover GH, Li TQ, Ress D (2000) Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44:162–167

    Article  CAS  Google Scholar 

  • Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA) 121. Magn Reson Med 47:1202–1210

    Article  Google Scholar 

  • Gruetter R (1993) Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med 29:804–811

    Article  CAS  Google Scholar 

  • Gruetter R, Tkac I (2000) Field mapping without reference scan using asymmetric echo-planar techniques. Magn Reson Med 43:319–323

    Article  CAS  Google Scholar 

  • Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) The continuous and discrete Fourier transforms. In: Magnetic resonance imaging: physical principles and sequence design. Wiley, New York, pp 207–230

    Google Scholar 

  • Hamandi K, Salek-Haddadi A, Fish DR, Lemieux L (2004) EEG/functional MRI in epilepsy: the queen square experience. J Clin Neurophysiol 21:241–248

    Article  Google Scholar 

  • Hennel F, Nedelec JF (1995) Interleaved asymmetric echo-planar imaging. Magn Reson Med 34:520–524

    Article  CAS  Google Scholar 

  • Hoult DI, Lauterbur PC (1976) The signal to noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 34:425–433

    Google Scholar 

  • Hu X, Le TH (1996) Artifact reduction in EPI with phase-encoded reference scan. Magn Reson Med 36:166–171

    Article  CAS  Google Scholar 

  • Hutchinson M, Raff U (1988) Fast MRI data acquisition using multiple detectors. Magn Reson Med 6:87–91

    Article  CAS  Google Scholar 

  • Hutter J, Price AN, Cordero-Grande L, Malik S, Ferrazzi G, Gaspar A, Hajnal JV (2018) Quiet echo planar imaging for functional and diffusion MRI. Magn Reson Med 79(3):1447–1459. https://doi.org/10.1002/mrm.26810

    Article  Google Scholar 

  • Hutton C, Bork A, Josephs O, Deichmann R, Ashburner J, Turner R (2002) Image distortion correction in fMRI: a quantitative evaluation. NeuroImage 16:217–240

    Article  Google Scholar 

  • Jacobs J, Kobayashi E, Boor R, Muhle H, Stephan W, Hawco C, Dubeau F, Jansen O, Stephani U, Gotman J, Siniatchkin M (2007) Hemodynamic responses to interictal epileptiform discharges in children with symptomatic epilepsy. Epilepsia 48:2068–2078

    Article  Google Scholar 

  • Jacobs J, Stich J, Zahneisen B, Assländer J, Ramantani G, Schulze-Bonhage A, LeVan P (2014) Fast fMRI provides high statistical power in the analysis of epileptic networks. NeuroImage 88:282–294. https://doi.org/10.1016/j.neuroimage.2013.10.018

    Article  Google Scholar 

  • Jezzard P, Balaban RS (1995) Correction for geometric distortion in echo planar images from B0 field variations 50. Magn Reson Med 34:65–73

    Article  CAS  Google Scholar 

  • Jezzard P, Clare S (1999) Sources of distortion in functional MRI data. Hum Brain Mapp 8:80–85

    Article  CAS  Google Scholar 

  • Jorge J, Grouiller F, Ipek Ö, Stoermer R, Michel CM, Figueiredo P, Gruetter R (2015) Simultaneous EEG-fMRI at ultra-high field: artifact prevention and safety assessment. NeuroImage 105:132–144. https://doi.org/10.1016/j.neuroimage.2014.10.055

    Article  Google Scholar 

  • Josephs O, Weiskopf N, Deichmann R, Turner R (2000) Trajectory measurement and generalised reconstruction in rectilinear EPI. In: Proc 8th Int Meet ISMRM, Denver, CO, USA, 1–7 April 2000

    Google Scholar 

  • Kirilina E, Lutti A, Poser BA, Blankenburg F, Weiskopf N (2016) The quest for the best: The impact of different EPI sequences on the sensitivity of random effect fMRI group analyses. NeuroImage 126:49–59. https://doi.org/10.1016/j.neuroimage.2015.10.071

    Article  Google Scholar 

  • Kleinschmidt A, Bruhn H, Kruger G, Merboldt KD, Stoppe G, Frahm J (1999) Effects of sedation, stimulation, and placebo on cerebral blood oxygenation: a magnetic resonance neuroimaging study of psychotropic drug action. NMR Biomed 12:286–292

    Article  CAS  Google Scholar 

  • Koopmans PJ, Boyacioğlu R, Barth M, Norris DG (2012) Whole brain, high resolution spin-echo resting state fMRI using PINS multiplexing at 7 T. NeuroImage 62(3):1939–1946. https://doi.org/10.1016/J.NEUROIMAGE.2012.05.080

    Article  Google Scholar 

  • Krakow K, Allen PJ, Symms MR, Lemieux L, Josephs O, Fish DR (2000) EEG recording during fMRI experiments: image quality. Hum Brain Mapp 10:10–15

    Article  CAS  Google Scholar 

  • Kundu P, Voon V, Balchandani P, Lombardo MV, Poser BA, Bandettini PA (2017) Multi-echo fMRI: a review of applications in fMRI denoising and analysis of BOLD signals. NeuroImage 154:59–80. https://doi.org/10.1016/J.NEUROIMAGE.2017.03.033

    Article  Google Scholar 

  • Lamberton F, Delcroix N, Grenier D, Mazoyer B, Joliot M (2007) A new EPI-based dynamic field mapping method: application to retrospective geometrical distortion corrections. J Magn Reson Imaging 26:747–755

    Article  Google Scholar 

  • Larkman DJ, Hajnal JV, Herlihy AH, Coutts GA, Young IR, Ehnholm G (2001) Use of multicoil arrays for separation of signal from multiple slices simultaneously excited. J Magn Reson Imaging 13(2):313–317

    Article  CAS  Google Scholar 

  • Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, Kleinschmidt A (2003) Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci U S A 100:11053–11058

    Article  CAS  Google Scholar 

  • Laufs H, Daunizeau J, Carmichael DW, Kleinschmidt A (2008) Recent advances in recording electrophysiological data simultaneously with magnetic resonance imaging. NeuroImage 40:515–528

    Article  CAS  Google Scholar 

  • Lemieux L, Allen PJ, Franconi F, Symms MR, Fish DR (1997) Recording of EEG during fMRI experiments: patient safety. Magn Reson Med 38:943–952

    Article  CAS  Google Scholar 

  • Lemieux L, Salek-Haddadi A, Lund TE, Laufs H, Carmichael D (2007) Modelling large motion events in fMRI studies of patients with epilepsy. Magn Reson Imaging 25:894–901

    Article  Google Scholar 

  • Liston AD, Lund TE, Salek-Haddadi A, Hamandi K, Friston KJ, Lemieux L (2006) Modelling cardiac signal as a confound in EEG–fMRI and its application in focal epilepsy studies. NeuroImage 30:827–834

    Article  CAS  Google Scholar 

  • Lund TE, Norgaard MD, Rostrup E, Rowe JB, Paulson OB (2005) Motion or activity: their role in intra- and inter-subject variation in fMRI. NeuroImage 26:960–964

    Article  Google Scholar 

  • Luo Q, Glover GH (2012) Influence of dense-array EEG cap on fMRI signal. Magn Reson Med 68(3):807–815. https://doi.org/10.1002/mrm.23299

    Article  Google Scholar 

  • Lutcke H, Merboldt KD, Frahm J (2006) The cost of parallel imaging in functional MRI of the human brain. Magn Reson Imaging 24:1–5

    Article  Google Scholar 

  • Lutti A, Thomas DL, Hutton C, Weiskopf N (2013) High-resolution functional MRI at 3 T: 3D/2D echo-planar imaging with optimized physiological noise correction. Magn Reson Med 69(6):1657–1664. https://doi.org/10.1002/mrm.24398

    Article  Google Scholar 

  • Mackenzie IS, Robinson EM, Wells AN, Wood B (1987) A simple field map for shimming. Magn Reson Med 5:262–268

    Article  CAS  Google Scholar 

  • Mansfield P (1977) Multi-planar image formation using NMR spin echoes. J Phys C 10:L55–L58

    Article  CAS  Google Scholar 

  • Mansfield P (1984) Spatial mapping of the chemical shift in NMR. Magn Reson Med 1:370–386

    Article  CAS  Google Scholar 

  • Mansfield P, Harvey PR (1993) Limits to neural stimulation in echo-planar imaging. Magn Reson Med 29:746–758

    Article  CAS  Google Scholar 

  • Marcus DS, Harms MP, Snyder AZ, Jenkinson M, Wilson JA, Glasser MF (2013) Human connectome project informatics: quality control, database services, and data visualization. NeuroImage 80:202–219. https://doi.org/10.1016/j.neuroimage.2013.05.077

    Article  Google Scholar 

  • Maziero D, Sturzbecher M, Velasco TR, Rondinoni C, Castellanos AL, Carmichael DW, Salmon CEG (2015) A comparison of independent component analysis (ICA) of fMRI and electrical source imaging (ESI) in focal epilepsy reveals misclassification using a classifier. Brain Topogr 28(6):4. https://doi.org/10.1007/s10548-015-0436-4

    Article  Google Scholar 

  • Maziero D, Velasco TR, Hunt N, Payne E, Lemieux L, Salmon CEG, Carmichael DW (2016) Towards motion insensitive EEG-fMRI: Correcting motion-induced voltages and gradient artefact instability in EEG using an fMRI prospective motion correction (PMC) system. NeuroImage 138:13–27. https://doi.org/10.1016/j.neuroimage.2016.05.003

    Article  Google Scholar 

  • McDowell AR, Carmichael DW (2018) Optimal repetition time reduction for single subject event-related functional magnetic resonance imaging. Magn Reson Med. https://doi.org/10.1002/mrm.27498

  • Menon RS, Thomas CG, Gati JS (1997) Investigation of BOLD contrast in fMRI using multi-shot EPI. NMR Biomed 10:179–182

    Article  CAS  Google Scholar 

  • Merboldt KD, Finsterbusch J, Frahm J (2000) Reducing inhomogeneity artifacts in functional MRI of human brain activation-thin sections vs gradient compensation. J Magn Reson 145:184–191

    Article  CAS  Google Scholar 

  • Miller KL, Hargreaves BA, Lee J, Ress D, deCharms RC, Pauly JM (2003) Functional brain imaging using a blood oxygenation sensitive steady state. Magn Reson Med 50:675–683

    Article  Google Scholar 

  • Miller KL, Hargreaves BA, Lee J, Ress D, deCharms RC, Pauly JM (2004) Functional brain imaging with BOSS FMRI. Conf Proc IEEE Eng Med Biol Soc 7:5234–5237

    Google Scholar 

  • Miller KL, Smith SM, Jezzard P, Pauly JM (2006) High-resolution FMRI at 1.5T using balanced SSFP. Magn Reson Med 55:161–170

    Article  CAS  Google Scholar 

  • Morgan PS, Bowtell RW, McIntyre DJ, Worthington BS (2004) Correction of spatial distortion in EPI due to inhomogeneous static magnetic fields using the reversed gradient method. J Magn Reson Imaging 19:499–507

    Article  Google Scholar 

  • Mullinger K, Debener S, Coxon R, Bowtell R (2007) Effects of simultaneous EEG recording on MRI data quality at 1.5, 3 and 7 tesla. Int J Psychophysiol 67:178–188

    Article  Google Scholar 

  • Munger P, Crelier GR, Peters TM, Pike GB (2000) An inverse problem approach to the correction of distortion in EPI images. IEEE Trans Med Imaging 19:681–689

    Article  CAS  Google Scholar 

  • Nair G, Duong TQ (2004) Echo-planar BOLD fMRI of mice on a narrow-bore 9.4 T magnet. Magn Reson Med 52:430–434

    Article  Google Scholar 

  • Norris DG, Zysset S, Mildner T, Wiggins CJ (2002) An investigation of the value of spin-echo-based fMRI using a Stroop color-word matching task and EPI at 3 T. NeuroImage 15:719–726

    Article  Google Scholar 

  • Nunes R, Hajnal J et al. (2006) Simultaneous slice excitation and reconstruction for single shot EPI. Afni.Nimh.Nih.Gov. http://afni.nimh.nih.gov/sscc/staff/rwcox/ISMRM_2006/ISMRM2006-3340/files/00293.pdf

  • Ordidge R (1999) The development of echo-planar imaging (EPI): 1977–1982. MAGMA 9:117–121

    Article  CAS  Google Scholar 

  • Ordidge RJ, Gorell JM, Deniau JC, Knight RA, Helpern JA (1994a) Assessment of relative brain iron concentrations using T2-weighted and T2*-weighted MRI at 3 Tesla. Magn Reson Med 32:335–341

    Article  CAS  Google Scholar 

  • Ordidge RJ, Helpern JA, Qing ZX, Knight RA, Nagesh V (1994b) Correction of motional artifacts in diffusion-weighted MR images using navigator echoes. Magn Reson Imaging 12:455–460

    Article  CAS  Google Scholar 

  • Parkes LM, Schwarzbach JV, Bouts AA, Deckers RH, Pullens P, Kerskens CM, Norris DG (2005) Quantifying the spatial resolution of the gradient echo and spin echo BOLD response at 3 Tesla. Magn Reson Med 54:1465–1472

    Article  Google Scholar 

  • Parkes L, Fulcher B, Yücel M, Fornito A (2018) An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. NeuroImage 171:415–436. https://doi.org/10.1016/j.neuroimage.2017.12.073

    Article  Google Scholar 

  • Poser BA, Versluis MJ, Hoogduin JM, Norris DG (2006) BOLD contrast sensitivity enhancement and artifact reduction with multiecho EPI: parallel-acquired inhomogeneity-desensitized fMRI. Magn Reson Med 55:1227–1235

    Article  Google Scholar 

  • Poser BA, Koopmans PJ, Witzel T, Wald LL, Barth M (2010) Three dimensional echo-planar imaging at 7 Tesla. NeuroImage 51(1):261–266. https://doi.org/10.1016/j.neuroimage.2010.01.108

    Article  CAS  Google Scholar 

  • Power JD, Plitt M, Gotts SJ, Kundu P, Voon V, Bandettini PA, Martin A (2018) Ridding fMRI data of motion-related influences: Removal of signals with distinct spatial and physical bases in multiecho data. Proc Natl Acad Sci 115(9):2105–2114. https://doi.org/10.1073/pnas.1720985115

    Article  CAS  Google Scholar 

  • Preston AR, Thomason ME, Ochsner KN, Cooper JC, Glover GH (2004) Comparison of spiral-in/out and spiral-out BOLD fMRI at 1.5 and 3 T. NeuroImage 21:291–301

    Article  Google Scholar 

  • Priest AN, Carmichael DW, De Vita E, Ordidge RJ (2004) Method for spatially interleaving two images to halve EPI readout times: two reduced acquisitions interleaved (TRAIL). Magn Reson Med 51:1212–1222

    Article  Google Scholar 

  • Priest AN, De Vita E, Thomas DL, Ordidge RJ (2006) EPI distortion correction from a simultaneously acquired distortion map using TRAIL. J Magn Reson Imaging 23:597–603

    Article  Google Scholar 

  • Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI 18. Magn Reson Med 42:952–962

    Article  CAS  Google Scholar 

  • Pruim RHR, Mennes M, van Rooij D, Llera A, Buitelaar JK, Beckmann CF (2015) ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data. NeuroImage 112:267–277. https://doi.org/10.1016/j.neuroimage.2015.02.064

    Article  Google Scholar 

  • Reber PJ, Wong EC, Buxton RB, Frank LR (1998) Correction of off resonance-related distortion in echo-planar imaging using EPI-based field maps. Magn Reson Med 39:328–330

    Article  CAS  Google Scholar 

  • Reeder SB, Atalar E, Bolster BD Jr, McVeigh ER (1997) Quantification and reduction of ghosting artifacts in interleaved echo-planar imaging. Magn Reson Med 38:429–439

    Article  CAS  Google Scholar 

  • Rzedzian R (1987) High speed, high resolution, spin echo imaging by mosaic scan and MESH. In: Proc 6th Annu Meet SMRM, New York, 17–21 Aug 1987

    Google Scholar 

  • Sahib AK, Mathiak K, Erb M, Elshahabi A, Klamer S, Scheffler K, Ethofer T (2016) Effect of temporal resolution and serial autocorrelations in event-related functional MRI. Magn Reson Med 76(6):1805–1813. https://doi.org/10.1002/mrm.26073

    Article  Google Scholar 

  • Salek-Haddadi A, Lemieux L, Merschhemke M, Diehl B, Allen PJ, Fish DR (2003) EEG quality during simultaneous functional MRI of interictal epileptiform discharges. Magn Reson Imaging 21:1159–1166

    Article  Google Scholar 

  • Salek-Haddadi A, Diehl B, Hamandi K, Merschhemke M, Liston A, Friston K, Duncan JS, Fish DR, Lemieux L (2006) Hemodynamic correlates of epileptiform discharges: an EEG–fMRI study of 63 patients with focal epilepsy. Brain Res 1088:148–166

    Article  CAS  Google Scholar 

  • Sangill R, Wallentin M, Ostergaard L, Vestergaard-Poulsen P (2006) The impact of susceptibility gradients on cartesian and spiral EPI for BOLD fMRI. MAGMA 19:105–114

    Article  Google Scholar 

  • Scarff CJ, Reynolds A, Goodyear BG, Ponton CW, Dort JC, Eggermont JJ (2004) Simultaneous 3-T fMRI and high-density recording of human auditory evoked potentials. NeuroImage 23:1129–1142

    Article  Google Scholar 

  • Schmidt CF, Boesiger P, Ishai A (2005) Comparison of fMRI activation as measured with gradient- and spin-echo EPI during visual perception. NeuroImage 26:852–859

    Article  Google Scholar 

  • Schmithorst VJ, Dardzinski BJ, Holland SK (2001) Simultaneous correction of ghost and geometric distortion artifacts in EPI using a multiecho reference scan. IEEE Trans Med Imaging 20:535–539

    Article  CAS  Google Scholar 

  • Schmitt F, Stehling MK, Turner R (eds) (1998) Echo-planar imaging. Springer, Berlin

    Google Scholar 

  • Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL (2012) Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 67(5):1210–1224. https://doi.org/10.1002/mrm.23097

    Article  Google Scholar 

  • Shen J, Rothman DL (1997) Adiabatic slice-selective excitation for surface coils. J Magn Reson 124:72–79

    Article  CAS  Google Scholar 

  • Sled JG, Pike GB (1998) Standing-wave and RF penetration artifacts caused by elliptic geometry: an electrodynamic analysis of MRI. IEEE Trans Med Imaging 17:653–662

    Article  CAS  Google Scholar 

  • Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603

    Article  CAS  Google Scholar 

  • Stevens TK, Ives JR, Klassen LM, Bartha R (2007) MR compatibility of EEG scalp electrodes at 4 Tesla. J Magn Reson Imaging 25:872–877

    Article  Google Scholar 

  • Stirnberg R, Huijbers W, Brenner D, Poser BA, Breteler M, Stöcker T (2017) Rapid whole-brain resting-state fMRI at 3 T: efficiency-optimized three-dimensional EPI versus repetition time-matched simultaneous-multi-slice EPI. NeuroImage 163:81–92. https://doi.org/10.1016/j.neuroimage.2017.08.031

    Article  Google Scholar 

  • Tierney TM, Weiss-Croft LJ, Centeno M, Shamshiri EA, Perani S, Baldeweg T, Carmichael DW (2016) FIACH: a biophysical model for automatic retrospective noise control in fMRI. NeuroImage 124:1009–1020. https://doi.org/10.1016/j.neuroimage.2015.09.034

    Article  Google Scholar 

  • Todd N, Moeller S, Auerbach EJ, Yacoub E, Flandin G, Weiskopf N (2016) Evaluation of 2D multiband EPI imaging for high-resolution, whole-brain, task-based fMRI studies at 3T: sensitivity and slice leakage artifacts. NeuroImage 124:32–42. https://doi.org/10.1016/j.neuroimage.2015.08.056

    Article  Google Scholar 

  • Turner R, Ordidge RJ (2000) Technical challenges of functional magnetic resonance imaging. IEEE Eng Med Biol Mag 19:42–54

    Article  CAS  Google Scholar 

  • Uğurbil K, Xu J, Auerbach EJ, Moeller S, Vu AT, Duarte-Carvajalino JM (2013) Pushing spatial and temporal resolution for functional and diffusion MRI in the human connectome project. NeuroImage 80:80–104. https://doi.org/10.1016/j.neuroimage.2013.05.012

    Article  CAS  Google Scholar 

  • van Gelderen P, de Zwart JA, Starewicz P, Hinks RS, Duyn JH (2007) Real-time shimming to compensate for respiration-induced B0 fluctuations. Magn Reson Med 57:362–368

    Article  Google Scholar 

  • Vasios CE, Angelone LM, Purdon PL, Ahveninen J, Belliveau JW, Bonmassar G (2006) EEG/(f)MRI measurements at 7 Tesla using a new EEG cap (“InkCap”). NeuroImage 33:1082–1092

    Article  Google Scholar 

  • Wan X, Gullberg GT, Parker DL, Zeng GL (1997) Reduction of geometric and intensity distortions in echo-planar imaging using a multireference scan. Magn Reson Med 37:932–942

    Article  CAS  Google Scholar 

  • Ward HA, Riederer SJ, Jack CR Jr (2002) Real-time autoshimming for echo planar timecourse imaging. Magn Reson Med 48:771–780

    Article  Google Scholar 

  • Weiskopf N, Klose U, Birbaumer N, Mathiak K (2005) Single-shot compensation of image distortions and BOLD contrast optimization using multi-echo EPI for real-time fMRI. NeuroImage 24:1068–1079

    Article  Google Scholar 

  • Weiskopf N, Hutton C, Josephs O, Deichmann R (2006) Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: a whole-brain analysis at 3 T and 1.5 T. NeuroImage 33:493–504

    Article  Google Scholar 

  • Weiskopf N, Hutton C, Josephs O, Turner R, Deichmann R (2007) Optimized EPI for fMRI studies of the orbitofrontal cortex: compensation of susceptibility-induced gradients in the readout direction. MAGMA 20:39–49

    Article  Google Scholar 

  • Weisskoff RM (1996) Simple measurement of scanner stability for functional NMR imaging of activation in the brain. Magn Reson Med 36:643–645

    Article  CAS  Google Scholar 

  • Wielopolski PA, Schmitt F, Stehling MK (1998) Echo-planar pulse sequences. In: Schmitt F, Stehling MK, Turner R (eds) Echo-planar imaging. Springer, Berlin, pp 65–134

    Chapter  Google Scholar 

  • Wilson JL, Jezzard P (2003) Utilization of an intra-oral diamagnetic passive shim in functional MRI of the inferior frontal cortex. Magn Reson Med 50:1089–1094

    Article  Google Scholar 

  • Wilson JL, Jenkinson M, Jezzard P (2003) Protocol to determine the optimal intraoral passive shim for minimisation of susceptibility artifact in human inferior frontal cortex 3. NeuroImage 19:1802–1811

    Article  Google Scholar 

  • Wong C-K, Zotev V, Misaki M, Phillips R, Luo Q, Bodurka J (2016) Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR). NeuroImage 129:133–147. https://doi.org/10.1016/j.neuroimage.2016.01.042

    Article  Google Scholar 

  • Zahneisen B, Grotz T, Lee KJ, Ohlendorf S, Reisert M, Zaitsev M, Hennig J (2011) Three-dimensional MR-encephalography: fast volumetric brain imaging using rosette trajectories. Magn Reson Med 65(5):1260–1268. https://doi.org/10.1002/mrm.22711

    Article  Google Scholar 

  • Zaitsev M, Hennig J, Speck O (2004) Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction. Magn Reson Med 52:1156–1166

    Article  CAS  Google Scholar 

  • Zhong K, Leupold J, Hennig J, Speck O (2007) Systematic investigation of balanced steady-state free precession for functional MRI in the human visual cortex at 3 Tesla. Magn Reson Med 57:67–73

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank the following contributors to this chapter: Danilo Mazeiro and Mirja Steinbrenner for helping make figures; Ralf Deichmann (Brain Imaging Centre, Frankfurt) for his useful comments about EPI artefacts, Jack Wells (Department for Medical Physics, UCL, London), Philip Allen (Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, London) and Nikolaus Weiskopf for careful reading of the manuscript; Chloe Hutton and Nikolaus Weiskopf (Wellcome Trust Centre for Neuroimaging, UCL, London) for providing the distortion correction part of Fig. 10.3 and the Weisskoff plot script for Fig. 10.8b; Alison Duncan (AMRIG, UCL, London) for providing Fig. a; and Richard Bowtell (Sir Peter Mansfield Magnetic Resonance Centre, Nottingham, UK) and the International Journal of Psychophysiology (https://doi.org/10.1016/j.ijpsycho.2007.06.008) for allowing the reproduction of Figs. 10.5, 10.6, and 10.7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Carmichael .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carmichael, D. (2022). Image Quality Issues. In: Mulert, C., Lemieux, L. (eds) EEG - fMRI. Springer, Cham. https://doi.org/10.1007/978-3-031-07121-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07121-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07120-1

  • Online ISBN: 978-3-031-07121-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics