Skip to main content

SUM Classes and Quotient Generalized Interval Systems

  • 103 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 13267)

Abstract

The present paper develops algebraic properties of the SUM-class system first developed by Richard Cohn and explored by Robert Cook and Joseph Straus, in the context of David Lewin’s Generalized Interval System (GIS) concept. Motivated by his observation that harmonic triads whose pitch classes sum to a given value modulo 12 share certain voice-leading properties, Cohn defined SUM classes for the 24 consonant (major and minor) triads, and defined transformations on these equivalence classes. We present the SUM-class system as a quotient GIS structure, and explore the dual quotient GIS implied by Lewin’s theory for non-commutative GISs, and we generalize to other types of pitch-class sets (other set-classes).

Keywords

  • Generalized Interval System
  • Group homomorphism
  • Quotient group
  • SUM class

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-07015-0_9
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-07015-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

References

  1. Cohn, R.: Square dances with cubes. J. Music Theory 42(2), 283–296 (1998)

    CrossRef  Google Scholar 

  2. Cohn, R.: Audacious Euphony: Chromaticism and the Triad’s Second Nature. Oxford University Press, Oxford (2012)

    CrossRef  Google Scholar 

  3. Cook, R.: Transformational approaches to romantic harmony and the late works of César Franck. Ph.D. dissertation, University of Chicago (2001)

    Google Scholar 

  4. Lewin, D.: Generalized Musical Intervals and Transformations. Yale University Press New Haven (1987). Reprinted Oxford University Press, Oxford (2007)

    Google Scholar 

  5. Clampitt, D.: Pairwise well-formed scales: structural and transformational properties. Ph.D. dissertation, SUNY at Buffalo (1997)

    Google Scholar 

  6. Cohn, R.: Introduction to Neo-Riemannian theory: a survey and a historical perspective. J. Music Theory 42(2), 167–180 (1998)

    CrossRef  Google Scholar 

  7. Cohn, R.: Weitzmann’s regions, my cycles, and Douthett’s dancing cubes. Music Theory Spectr. 22(1), 89–103 (2000)

    CrossRef  Google Scholar 

  8. Orvek, D.: Generalized transformational voice-leading systems. M.A. thesis, Ohio State University (2019)

    Google Scholar 

  9. Straus, J.: Sum class. J. Music Theory 62(2), 279–338 (2018)

    CrossRef  Google Scholar 

  10. Kochavi, J.: Some structural features of contextually-defined inversion operators. J. Music Theory 42(2), 307–320 (1998)

    CrossRef  Google Scholar 

  11. Lewin, D.: Musical Form and Transformation: 4 Analytical Essays. Yale University Press, New Haven (1993). Reprinted Oxford University Press, Oxford (2007)

    Google Scholar 

  12. Hook, J.: Cross-type transformations and the path consistency condition. Music Theory Spectr. 29(1), 1–39 (2007)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Clampitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Orvek, D., Clampitt, D. (2022). SUM Classes and Quotient Generalized Interval Systems. In: Montiel, M., Agustín-Aquino, O.A., Gómez, F., Kastine, J., Lluis-Puebla, E., Milam, B. (eds) Mathematics and Computation in Music. MCM 2022. Lecture Notes in Computer Science(), vol 13267. Springer, Cham. https://doi.org/10.1007/978-3-031-07015-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07015-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07014-3

  • Online ISBN: 978-3-031-07015-0

  • eBook Packages: Computer ScienceComputer Science (R0)