Skip to main content

Optimal ABox Repair w.r.t. Static \(\mathcal {EL}\) TBoxes: From Quantified ABoxes Back to ABoxes

  • 499 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13261)

Abstract

Errors in Description Logic (DL) ontologies are often detected when a reasoner computes unwanted consequences. The question is then how to repair the ontology such that the unwanted consequences no longer follow, but as many of the other consequences as possible are preserved. The problem of computing such optimal repairs was addressed in our previous work in the setting where the data (expressed by an ABox) may contain errors, but the schema (expressed by an \(\mathcal {EL} \) TBox) is assumed to be correct. Actually, we consider a generalization of ABoxes called quantified ABoxes (qABoxes) both as input for and as result of the repair process. Using qABoxes for repair allows us to retain more information, but the disadvantage is that standard DL systems do not accept qABoxes as input. This raises the question, investigated in the present paper, whether and how one can obtain optimal repairs if one restricts the output of the repair process to being ABoxes. In general, such optimal ABox repairs need not exist. Our main contribution is that we show how to decide the existence of optimal ABox repairs in exponential time, and how to compute all such repairs in case they exist.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-06981-9_8
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-06981-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 1.

Notes

  1. 1.

    https://www.w3.org/OWL/.

  2. 2.

    For example, the large medical ontology Snomed CT is an \(\mathcal {EL} \) ontology.

  3. 3.

    The proof for this polynomiality result in [20] is actually incorrect, but we show how to correct it.

  4. 4.

    The variables correspond to what we have called anonymized individuals in the introduction, and the individuals to what we have called named individuals.

  5. 5.

    The \(\mathsf {IQ}\)-repairs computed by the approaches in [3] would contain more assertions, which are however redundant for \(\mathsf {IRQ}\)-entailment w.r.t. \(\mathcal {T}\).

References

  1. Baader, F.: A graph-theoretic generalization of the least common subsumer and the most specific concept in the description logic \(\cal{EL}\). In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 177–188. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30559-0_15

    CrossRef  MATH  Google Scholar 

  2. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/9781139025355

    CrossRef  MATH  Google Scholar 

  3. Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Computing optimal repairs of quantified ABoxes w.r.t. static \(\cal{EL}\) TBoxes. In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 309–326. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5_18

    CrossRef  Google Scholar 

  4. Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Optimal ABox repair w.r.t. static \(\cal{EL}\) TBoxes: from quantified ABoxes back to ABoxes (extended version). LTCS-Report 22–01, Chair of Automata Theory, Institute of Theoretical Computer Science, Technische Universität Dresden, Dresden, Germany (2022). https://doi.org/10.25368/2022.65

  5. Baader, F., Kriegel, F., Nuradiansyah, A.: Privacy-preserving ontology publishing for \(\cal{EL} \) instance stores. In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019. LNCS (LNAI), vol. 11468, pp. 323–338. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19570-0_21

    CrossRef  Google Scholar 

  6. Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Making repairs in description logics more gentle. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Sixteenth International Conference, KR 2018, Tempe, Arizona, 30 October–2 November 2018, pp. 319–328. AAAI Press (2018). https://aaai.org/ocs/index.php/KR/KR18/paper/view/18056

  7. Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Computing compliant anonymisations of quantified ABoxes w.r.t. \(\cal{EL} \) policies. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12506, pp. 3–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62419-4_1

    CrossRef  Google Scholar 

  8. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpointing in the description logic \(\cal{EL}^+\). In: Proceedings of the Third International Conference on Knowledge Representation in Medicine, Phoenix, Arizona, USA, 31 May–2 June 2008. CEUR Workshop Proceedings, vol. 410. CEUR-WS.org (2008). http://ceur-ws.org/Vol-410/Paper01.pdf

  9. Bienvenu, M., Bourgaux, C.: Inconsistency-tolerant querying of description logic knowledge bases. In: Pan, J.Z., et al. (eds.) Reasoning Web 2016. LNCS, vol. 9885, pp. 156–202. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49493-7_5

    CrossRef  MATH  Google Scholar 

  10. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite graphs. In: 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23–25 October 1995, pp. 453–462. IEEE Computer Society (1995). https://doi.org/10.1109/SFCS.1995.492576

  11. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL DL entailments. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 267–280. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_20

    CrossRef  Google Scholar 

  12. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant query answering in ontology-based data access. J. Web Semant. 33, 3–29 (2015). https://doi.org/10.1016/j.websem.2015.04.002

    CrossRef  Google Scholar 

  13. Lutz, C., Wolter, F.: Deciding inseparability and conservative extensions in the description logic \(\cal{EL}\). J. Symb. Comput. 45(2), 194–228 (2010). https://doi.org/10.1016/j.jsc.2008.10.007

    CrossRef  MATH  Google Scholar 

  14. Matos, V.B., Guimarães, R., Santos, Y.D., Wassermann, R.: Pseudo-contractions as gentle repairs. In: Lutz, C., Sattler, U., Tinelli, C., Turhan, A.-Y., Wolter, F. (eds.) Description Logic, Theory Combination, and All That. LNCS, vol. 11560, pp. 385–403. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22102-7_18

    CrossRef  Google Scholar 

  15. Meyer, T.A., Lee, K., Booth, R., Pan, J.Z.: Finding maximally satisfiable terminologies for the description logic \(\cal{{ALC}}\). In: Proceedings, The Twenty-First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference, 16–20 July 2006, Boston, Massachusetts, USA, pp. 269–274. AAAI Press (2006). http://www.aaai.org/Library/AAAI/2006/aaai06-043.php

  16. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Proceedings of the 14th International Conference on World Wide Web, WWW 2005, Chiba, Japan, 10–14 May 2005. pp. 633–640. ACM (2005). https://doi.org/10.1145/1060745.1060837

  17. Peñaloza, R., Turhan, A.-Y.: A practical approach for computing generalization inferences in \(\cal{EL}\). In: Antoniou, G., et al. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 410–423. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21034-1_28

    CrossRef  Google Scholar 

  18. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: IJCAI-03, Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, Acapulco, Mexico, 9–15 August 2003, pp. 355–362. Morgan Kaufmann (2003). http://ijcai.org/Proceedings/03/Papers/053.pdf

  19. Schlobach, S., Huang, Z., Cornet, R., van Harmelen, F.: Debugging incoherent terminologies. J. Autom. Reason. 39(3), 317–349 (2007). https://doi.org/10.1007/s10817-007-9076-z

    MathSciNet  CrossRef  MATH  Google Scholar 

  20. Zarrieß, B., Turhan, A.: Most specific generalizations w.r.t. general \(\cal{EL}\)-TBoxes. In: IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China, 3–9 August 2013, pp. 1191–1197. IJCAI/AAAI (2013). http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6709

Download references

Acknowledgements

This work was partially supported by the AI competence center ScaDS.AI Dresden/Leipzig and the Deutsche Forschungsgemeinschaft (DFG), Grant 430150274, and Grant 389792660 within TRR 248.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Kriegel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A. (2022). Optimal ABox Repair w.r.t. Static \(\mathcal {EL}\) TBoxes: From Quantified ABoxes Back to ABoxes. In: , et al. The Semantic Web. ESWC 2022. Lecture Notes in Computer Science, vol 13261. Springer, Cham. https://doi.org/10.1007/978-3-031-06981-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06981-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06980-2

  • Online ISBN: 978-3-031-06981-9

  • eBook Packages: Computer ScienceComputer Science (R0)