Baier, S., Ma, Y., Tresp, V.: Improving visual relationship detection using semantic modeling of scene descriptions. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 53–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_4
CrossRef
Google Scholar
Baker, C.F., Fillmore, C.J., Lowe, J.B.: The Berkeley framenet project. In: 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, vol. 1, pp. 86–90 (1998)
Google Scholar
Chang, X., Ren, P., Xu, P., Li, Z., Chen, X., Hauptmann, A.: Scene graphs: a survey of generations and applications. arXiv preprint arXiv:2104.01111 (2021)
Chen, T., Yu, W., Chen, R., Lin, L.: Knowledge-embedded routing network for scene graph generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6163–6171 (2019)
Google Scholar
Curry, E., Salwala, D., Dhingra, P., Pontes, F.A., Yadav, P.: Multimodal event processing: a neural-symbolic paradigm for the internet of multimedia things. IEEE Internet of Things J. https://doi.org/10.1109/JIOT.2022.3143171
Dai, B., Zhang, Y., Lin, D.: Detecting visual relationships with deep relational networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3076–3086 (2017)
Google Scholar
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Google Scholar
Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1933–1941 (2016)
Google Scholar
Gangemi, A., Alam, M., Asprino, L., Presutti, V., Recupero, D.R.: Framester: a wide coverage linguistic linked data hub. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 239–254. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49004-5_16
CrossRef
Google Scholar
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
Google Scholar
Gu, J., Zhao, H., Lin, Z., Li, S., Cai, J., Ling, M.: Scene graph generation with external knowledge and image reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1969–1978 (2019)
Google Scholar
Guo, Y., Song, J., Gao, L., Shen, H.T.: One-shot scene graph generation. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 3090–3098 (2020)
Google Scholar
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
Google Scholar
Hung, Z.S., Mallya, A., Lazebnik, S.: Contextual translation embedding for visual relationship detection and scene graph generation. IEEE Trans. Pattern Anal. Mach. Intell. 43, 3820–3832 (2020)
CrossRef
Google Scholar
Ilievski, F., et al.: KGTK: a toolkit for large knowledge graph manipulation and analysis. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12507, pp. 278–293. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8_18
CrossRef
Google Scholar
Ilievski, F., Oltramari, A., Ma, K., Zhang, B., McGuinness, D.L., Szekely, P.: Dimensions of commonsense knowledge. arXiv preprint arXiv:2101.04640 (2021)
Ilievski, F., Szekely, P., Zhang, B.: CSKG: the commonsense knowledge graph. In: Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 680–696. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77385-4_41
CrossRef
Google Scholar
Johnson, J., Gupta, A., Fei-Fei, L.: Image generation from scene graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1219–1228 (2018)
Google Scholar
Kan, X., Cui, H., Yang, C.: Zero-shot scene graph relation prediction through commonsense knowledge integration. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds.) ECML PKDD 2021. LNCS (LNAI), vol. 12976, pp. 466–482. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86520-7_29
CrossRef
Google Scholar
Khan, M.J., Curry, E.: Neuro-symbolic visual reasoning for multimedia event processing: overview, prospects and challenges. In: Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM 2020) Workshops (2020)
Google Scholar
Kipfer, B.: Roget’s 21st Century Thesaurus in Dictionary form, 3rd edn. The Philip Lief Group, New York (2005)
Google Scholar
Koner, R., Li, H., Hildebrandt, M., Das, D., Tresp, V., Günnemann, S.: Graphhopper: multi-hop scene graph reasoning for visual question answering. In: Hotho, A., et al. (eds.) ISWC 2021. LNCS, vol. 12922, pp. 111–127. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88361-4_7
CrossRef
Google Scholar
Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 123(1), 32–73 (2017)
MathSciNet
CrossRef
Google Scholar
Lee, C.W., Fang, W., Yeh, C.K., Wang, Y.C.F.: Multi-label zero-shot learning with structured knowledge graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1576–1585 (2018)
Google Scholar
Lee, S., Kim, J.W., Oh, Y., Jeon, J.H.: Visual question answering over scene graph. In: 2019 First International Conference on Graph Computing (GC), pp. 45–50. IEEE (2019)
Google Scholar
Li, Y., Ouyang, W., Wang, X., Tang, X.: VIP-CNN: visual phrase guided convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1347–1356 (2017)
Google Scholar
Li, Y., Ouyang, W., Zhou, B., Shi, J., Zhang, C., Wang, X.: Factorizable net: an efficient subgraph-based framework for scene graph generation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 335–351 (2018)
Google Scholar
Li, Y., Ouyang, W., Zhou, B., Wang, K., Wang, X.: Scene graph generation from objects, phrases and region captions. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1261–1270 (2017)
Google Scholar
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2117–2125 (2017)
Google Scholar
Liu, L., Wang, M., He, X., Qing, L., Chen, H.: Fact-based visual question answering via dual-process system. Knowl.-Based Syst. 107650 (2021)
Google Scholar
Lu, C., Krishna, R., Bernstein, M., Fei-Fei, L.: Visual relationship detection with language priors. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 852–869. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_51
CrossRef
Google Scholar
Ma, C., Sun, L., Zhong, Z., Huo, Q.: ReLaText: exploiting visual relationships for arbitrary-shaped scene text detection with graph convolutional networks. Pattern Recogn. 111, 107684 (2021)
Google Scholar
Ma, K., Ilievski, F., Francis, J., Bisk, Y., Nyberg, E., Oltramari, A.: Knowledge-driven data construction for zero-shot evaluation in commonsense question answering. In: 35th AAAI Conference on Artificial Intelligence (2021)
Google Scholar
McCarthy, J., et al.: Programs with Common Sense. RLE and MIT Computation Center (1960)
Google Scholar
Mi, L., Chen, Z.: Hierarchical graph attention network for visual relationship detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13886–13895 (2020)
Google Scholar
Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)
CrossRef
Google Scholar
Narasimhan, M., Schwing, A.G.: Straight to the facts: learning knowledge base retrieval for factual visual question answering. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 451–468 (2018)
Google Scholar
Palmonari, M., Minervini, P.: Knowledge graph embeddings and explainable AI. In: Knowledge Graphs for Explainable Artificial Intelligence: Foundations, Applications and Challenges, pp. 49–72. IOS Press, Amsterdam (2020)
Google Scholar
Peyre, J., Laptev, I., Schmid, C., Sivic, J.: Detecting unseen visual relations using analogies. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1981–1990 (2019)
Google Scholar
Prakash, A., et al.: Self-supervised real-to-sim scene generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16044–16054 (2021)
Google Scholar
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016)
CrossRef
Google Scholar
Sadeghi, M.A., Farhadi, A.: Recognition using visual phrases. In: CVPR 2011, pp. 1745–1752. IEEE (2011)
Google Scholar
Sap, M., et al.: Atomic: an atlas of machine commonsense for if-then reasoning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3027–3035 (2019)
Google Scholar
Speer, R., Chin, J., Havasi, C.: ConceptNet 5.5: an open multilingual graph of general knowledge. In: Thirty-First AAAI Conference on Artificial Intelligence, pp. 4444–4451 (2017)
Google Scholar
Su, Z., Zhu, C., Dong, Y., Cai, D., Chen, Y., Li, J.: Learning visual knowledge memory networks for visual question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7736–7745 (2018)
Google Scholar
Suhail, M., et al.: Energy-based learning for scene graph generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13936–13945 (2021)
Google Scholar
Tang, K.: A scene graph generation codebase in pytorch (2020). https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch
Tang, K., Niu, Y., Huang, J., Shi, J., Zhang, H.: Unbiased scene graph generation from biased training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3716–3725 (2020)
Google Scholar
Tang, K., Zhang, H., Wu, B., Luo, W., Liu, W.: Learning to compose dynamic tree structures for visual contexts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6619–6628 (2019)
Google Scholar
Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)
CrossRef
Google Scholar
Wan, H., Ou, J., Wang, B., Du, J., Pan, J.Z., Zeng, J.: Iterative visual relationship detection via commonsense knowledge graph. In: Wang, X., Lisi, F.A., Xiao, G., Botoeva, E. (eds.) JIST 2019. LNCS, vol. 12032, pp. 210–225. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41407-8_14
Wang, H., Zhang, F., Xie, X., Guo, M.: DKN: deep knowledge-aware network for news recommendation. In: Proceedings of the 2018 World Wide Web Conference, pp. 1835–1844 (2018)
Google Scholar
Wang, P., Wu, Q., Shen, C., Dick, A., Van Den Hengel, A.: FVQA: fact-based visual question answering. IEEE Trans. Pattern Anal. Mach. Intell. 40(10), 2413–2427 (2017)
CrossRef
Google Scholar
Wang, R., Wei, Z., Li, P., Zhang, Q., Huang, X.: Storytelling from an image stream using scene graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 9185–9192 (2020)
Google Scholar
Wang, S., Wang, R., Yao, Z., Shan, S., Chen, X.: Cross-modal scene graph matching for relationship-aware image-text retrieval. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1508–1517 (2020)
Google Scholar
Wang, X., Ye, Y., Gupta, A.: Zero-shot recognition via semantic embeddings and knowledge graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6857–6866 (2018)
Google Scholar
Wu, X., Sahoo, D., Hoi, S.C.: Recent advances in deep learning for object detection. Neurocomputing (2020)
Google Scholar
Xie, Y., Pu, P.: How commonsense knowledge helps with natural language tasks: a survey of recent resources and methodologies. arXiv preprint arXiv:2108.04674 (2021)
Xu, D., Zhu, Y., Choy, C.B., Fei-Fei, L.: Scene graph generation by iterative message passing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5410–5419 (2017)
Google Scholar
Yang, J., Lu, J., Lee, S., Batra, D., Parikh, D.: Graph R-CNN for scene graph generation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 670–685 (2018)
Google Scholar
Yang, X., Zhang, H., Cai, J.: Auto-encoding and distilling scene graphs for image captioning. IEEE Trans. Pattern Anal. Mach. Intell. 44(5), 2313–2327 (2022). https://doi.org/10.1109/TPAMI.2020.3042192
Ye, K., Kovashka, A.: Linguistic structures as weak supervision for visual scene graph generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8289–8299, June 2021
Google Scholar
Zareian, A., Karaman, S., Chang, S.-F.: Bridging knowledge graphs to generate scene graphs. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 606–623. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_36
Zareian, A., Karaman, S., Chang, S.F.: Weakly supervised visual semantic parsing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3736–3745 (2020)
Google Scholar
Zareian, A., Wang, Z., You, H., Chang, S.-F.: Learning visual commonsense for robust scene graph generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 642–657. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_38
Zellers, R., Yatskar, M., Thomson, S., Choi, Y.: Neural motifs: scene graph parsing with global context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5831–5840 (2018)
Google Scholar
Zhang, J., Kalantidis, Y., Rohrbach, M., Paluri, M., Elgammal, A., Elhoseiny, M.: Large-scale visual relationship understanding. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9185–9194 (2019)
Google Scholar