Ali, M., et al.: Bringing light into the dark: a large-scale evaluation of knowledge graph embedding models under a unified framework. IEEE Trans. Pattern Anal. Mach. Intell., 1–1 (2021). https://doi.org/10.1109/TPAMI.2021.3124805
Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: towards a mashup to build bioinformatics knowledge systems. J. Biomed. Inform. 41(5), 706–716 (2008)
CrossRef
Google Scholar
Betz, P., Niepert, M., Minervini, P., Stuckenschmidt, H.: Backpropagating through Markov logic networks. In: Proceedings of 15th International Workshop on Neural-Symbolic Learning and Reasoning, vol. 2986, pp. 67–81. CEUR (2021)
Google Scholar
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Neural Information Processing Systems (NIPS), pp. 1–9 (2013)
Google Scholar
Broscheit, S., Ruffinelli, D., Kochsiek, A., Betz, P., Gemulla, R.: LibKGE-a knowledge graph embedding library for reproducible research. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 165–174 (2020)
Google Scholar
Chen, S., Liu, X., Gao, J., Jiao, J., Zhang, R., Ji, Y.: Hitter: hierarchical transformers for knowledge graph embeddings. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP) (2020)
Google Scholar
Cohen, W., Yang, F., Mazaitis, K.R.: TensorLog: a probabilistic database implemented using deep-learning infrastructure. J. Artif. Intell. Res. 67, 285–325 (2020)
MathSciNet
CrossRef
Google Scholar
Das, R., et al.: Go for a walk and arrive at the answer: Reasoning over paths in knowledge bases using reinforcement learning. arXiv preprint arXiv:1711.05851 (2017)
Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, pp. 1811–1818 (2018)
Google Scholar
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Long and Short Papers), vol. 1, June 2019
Google Scholar
Dörpinghaus, J., Jacobs, M.: Semantic knowledge graph embeddings for biomedical research: data integration using linked open data. In: SEMANTICS Posters&Demos (2019)
Google Scholar
Evans, R., Grefenstette, E.: Learning explanatory rules from noisy data. J. Artif. Intell. Res. 61, 1–64 (2018)
MathSciNet
CrossRef
Google Scholar
Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowledge bases with AMIE. VLDB J. 24(6), 707–730 (2015)
CrossRef
Google Scholar
Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.: AMIE: association rule mining under incomplete evidence in ontological knowledge bases. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 413–422 (2013)
Google Scholar
García-Durán, A., Niepert, M.: KBLRN: end-to-end learning of knowledge base representations with latent, relational, and numerical features. UAI (2018)
Google Scholar
Himmelstein, D.S., et al.: Systematic integration of biomedical knowledge prioritizes drugs for repurposing. Elife 6, e26726 (2017)
Google Scholar
Hochreiter, S., Schmidhuber, J.: Long short-term memory. In: Neural Computation, vol. 9, pp. 1735–1780. MIT Press (1997)
Google Scholar
Liu, Y., Hildebrandt, M., Joblin, M., Ringsquandl, M., Raissouni, R., Tresp, V.: Neural multi-hop reasoning with logical rules on biomedical knowledge graphs. In: Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 375–391. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77385-4_22
CrossRef
Google Scholar
Meilicke, C., Betz, P., Stuckenschmidt, H.: Why a naive way to combine symbolic and latent knowledge base completion works surprisingly well. In: 3rd Conference on Automated Knowledge Base Construction (2021)
Google Scholar
Meilicke, C., Chekol, M.W., Fink, M., Stuckenschmidt, H.: Reinforced anytime bottom up rule learning for knowledge graph completion (2020)
Google Scholar
Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: Anytime bottom-up rule learning for knowledge graph completion. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI). IJCAI/AAAI Press (2019)
Google Scholar
Meilicke, C., Fink, M., Wang, Y., Ruffinelli, D., Gemulla, R., Stuckenschmidt, H.: Fine-grained evaluation of rule- and embedding-based systems for knowledge graph completion. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 3–20. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_1
CrossRef
Google Scholar
Minervini, P., Bošnjak, M., Rocktäschel, T., Riedel, S., Grefenstette, E.: Differentiable reasoning on large knowledge bases and natural language. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5182–5190 (2020)
Google Scholar
Minervini, P., Riedel, S., Stenetorp, P., Grefenstette, E., Rocktäschel, T.: Learning reasoning strategies in end-to-end differentiable proving. In: International Conference on Machine Learning, pp. 6938–6949. PMLR (2020)
Google Scholar
Mohamed, S.K., Nounu, A., Nováček, V.: Drug target discovery using knowledge graph embeddings. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, pp. 11–18 (2019)
Google Scholar
Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on multi-relational data. In: Getoor, L., Scheffer, T. (eds.) Proceedings of the 28th International Conference on Machine Learning, pp. 809–816. Omnipress (2011)
Google Scholar
Niepert, M., Minervini, P., Franceschi, L.: Implicit MLE: backpropagating through discrete exponential family distributions. In: NeurIPS (2021)
Google Scholar
Ott, S., Graf, L., Agibetov, A., Meilicke, C., Samwald, M.: Scalable and interpretable rule-based link prediction for large heterogeneous knowledge graphs (2020)
Google Scholar
Pogančić, M.V., Paulus, A., Musil, V., Martius, G., Rolinek, M.: Differentiation of blackbox combinatorial solvers. In: International Conference on Learning Representations (2020)
Google Scholar
Qu, M., Tang, J.: Probabilistic logic neural networks for reasoning. In: International Conference on Learning Representations (2020)
Google Scholar
Rocktäschel, T., Riedel, S.: End-to-end differentiable proving. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, pp. 3788–3800 (2017)
Google Scholar
Rolínek, M., Musil, V., Paulus, A., Vlastelica, M., Michaelis, C., Martius, G.: Optimizing rank-based metrics with blackbox differentiation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7620–7630 (2020)
Google Scholar
Rossi, A., Barbosa, D., Firmani, D., Matinata, A., Merialdo, P.: Knowledge graph embedding for link prediction: a comparative analysis. ACM Trans. Knowl. Discov. Data (TKDD) 15(2), 1–49 (2021)
CrossRef
Google Scholar
Ruffinelli, D., Broscheit, S., Gemulla, R.: You CAN teach an old dog new tricks! on training knowledge graph embeddings. In: International Conference on Learning Representations (2020)
Google Scholar
Sadeghian, A., Armandpour, M., Ding, P., Wang, D.Z.: DRUM: end-to-end differentiable rule mining on knowledge graphs. In: Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems, NeurIPS 2019, Vancouver, BC, Canada, pp. 15321–15331 (2019)
Google Scholar
Safavi, T., Koutra, D.: CoDEx: a comprehensive knowledge graph completion benchmark. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 8328–8350. Association for Computational Linguistics, November 2020
Google Scholar
Sola, D., Meilicke, C., van der Aa, H., Stuckenschmidt, H.: A rule-based recommendation approach for business process modeling. In: La Rosa, M., Sadiq, S., Teniente, E. (eds.) CAiSE 2021. LNCS, vol. 12751, pp. 328–343. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79382-1_20
CrossRef
Google Scholar
Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: knowledge graph embedding by relational rotation in complex space. In: International Conference on Learning Representations (2019)
Google Scholar
Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and text inference. In: Proceedings of the 3rd Workshop on Continuous Vector Space Models and Their Compositionality, pp. 57–66 (2015)
Google Scholar
Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: Balcan, M., Weinberger, K.Q. (eds.) Proceedings of the 33nd International Conference on Machine Learning. JMLR Workshop and Conference Proceedings, vol. 48, pp. 2071–2080. JMLR.org (2016)
Google Scholar
Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.: Composition-based multi-relational graph convolutional networks. In: International Conference on Learning Representations (2020)
Google Scholar
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 6000–6010 (2017)
Google Scholar
Wang, S., et al.: Mixed-curvature multi-relational graph neural network for knowledge graph completion. In: Proceedings of the Web Conference 2021, pp. 1761–1771 (2021)
Google Scholar
Xiong, W., Hoang, T., Wang, W.Y.: DeepPath: a reinforcement learning method for knowledge graph reasoning. arXiv preprint arXiv:1707.06690 (2017)
Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowledge base reasoning. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems, NeurIPS 2017, Long Beach, US (2017)
Google Scholar
Zhang, J., Chen, B., Zhang, L., Ke, X., Ding, H.: Neural, symbolic and neural-symbolic reasoning on knowledge graphs. AI Open 2, 14–35 (2021)
CrossRef
Google Scholar