Skip to main content

Knowledge Graph Entity Type Prediction with Relational Aggregation Graph Attention Network

  • 518 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13261)

Abstract

Most of the knowledge graph completion methods focus on inferring missing entities or relations between entities in the knowledge graphs. However, many knowledge graphs are missing entity types. The goal of entity type prediction in the knowledge graph is to infer the missing entity types that belong to entities in the knowledge graph, that is, (entity, entity type=?). At present, most knowledge graph entity type prediction models tend to model entities and entity types, which will cause the relations between entities to not be effectively used, and the relations often contain rich semantic information. To utilize the information contained in the relation when performing entity type prediction, we propose a method for entity type prediction based on relational aggregation graph attention network (RACE2T), which consists of an encoder relational aggregation graph attention network (FRGAT) and a decoder (CE2T). The encoder FRGAT uses the scoring function of the knowledge graph completion method to calculate the attention coefficient between entities. This attention coefficient will be used to aggregate the information of relations and entities in the neighborhood of the entity to utilize the information of the relations. The decoder CE2T is designed based on convolutional neural network, which models the entity embeddings output by FRGAT and entity type embeddings, and performs entity type prediction. The experimental results demonstrate that the method proposed in this paper outperforms existing methods. The source code and dataset for RACE2T can be downloaded from: https://github.com/GentlebreezeZ/RACE2T.

Keywords

  • Knowledge graph
  • Entity type
  • Relational aggregation
  • Attention
  • Scoring function
  • Convolutional neural network

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-06981-9_3
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-06981-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. 1.

    https://github.com/daiquocnguyen/ConvKB.

  2. 2.

    https://github.com/daiquocnguyen/CapsE.

  3. 3.

    https://github.ncsu.edu/cmoon2/kg.

  4. 4.

    https://github.com/Adam1679/ConnectE.

  5. 5.

    For details of entity type triples, see Ref [31].

  6. 6.

    https://github.com/GentlebreezeZ/CE2T.

  7. 7.

    https://github.com/GentlebreezeZ/RACE2T.

  8. 8.

    ConnectE (E2T) represents that entity type triples are not used.

  9. 9.

    ConnectE (E2T+TRT) represents that entity type triples are used.

  10. 10.

    https://github.com/Diego999/pyGAT.

References

  1. Biswas, R., Sofronova, R., Sack, H., Alam, M.: Cat2type: Wikipedia category embeddings for entity typing in knowledge graphs. In: K-CAP, pp. 81–88 (2021). https://doi.org/10.1145/3460210.3493575

  2. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

    Google Scholar 

  3. Chen, S., Wang, J., Jiang, F., Lin, C.: Improving entity linking by modeling latent entity type information. In: AAAI, pp. 7529–7537 (2020)

    Google Scholar 

  4. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: AAAI, pp. 1811–1818 (2018)

    Google Scholar 

  5. Jain, N., Kalo, J.-C., Balke, W.-T., Krestel, R.: Do embeddings actually capture knowledge graph semantics? In: Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 143–159. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77385-4_9

    CrossRef  Google Scholar 

  6. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: ACL, pp. 687–696 (2015). https://doi.org/10.3115/v1/p15-1067

  7. Ji, S., Pan, S., Cambria, E., Marttinen, P., Yu, P.S.: A survey on knowledge graphs: representation, acquisition, and applications. IEEE Trans. Neural Netw. Learn. Syst. 1–21 (2021). https://doi.org/10.1109/TNNLS.2021.3070843

  8. Jin, H., Hou, L., Li, J., Dong, T.: Attributed and predictive entity embedding for fine-grained entity typing in knowledge bases. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 282–292 (2018)

    Google Scholar 

  9. Jin, H., Hou, L., Li, J., Dong, T.: Fine-grained entity typing via hierarchical multi graph convolutional networks. In: EMNLP, pp. 4968–4977 (2019). https://doi.org/10.18653/v1/D19-1502

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR, pp. 1–15 (2015)

    Google Scholar 

  11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR, pp. 1–14 (2017)

    Google Scholar 

  12. Moon, C., Harenberg, S., Slankas, J., Samatova, N.F.: Learning contextual embeddings for knowledge graph completion. In: PACIS, pp. 248–253 (2017)

    Google Scholar 

  13. Moon, C., Jones, P., Samatova, N.F.: Learning entity type embeddings for knowledge graph completion. In: CIKM, pp. 2215–2218. ACM (2017)

    Google Scholar 

  14. Neelakantan, A., Chang, M.: Inferring missing entity type instances for knowledge base completion: new dataset and methods. In: NAACL, pp. 515–525 (2015). https://doi.org/10.3115/v1/n15-1054

  15. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.Q.: A novel embedding model for knowledge base completion based on convolutional neural network. In: NAACL, pp. 327–333 (2018). https://doi.org/10.18653/v1/n18-2053

  16. Nguyen, D.Q., Vu, T., Nguyen, T.D., Nguyen, D.Q., Phung, D.Q.: A capsule network-based embedding model for knowledge graph completion and search personalization. In: NAACL, pp. 2180–2189 (2019). https://doi.org/10.18653/v1/n19-1226

  17. Nickel, M., Rosasco, L., Poggio, T.A.: Holographic embeddings of knowledge graphs. In: AAAI, pp. 1955–1961 (2016)

    Google Scholar 

  18. Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on multi-relational data. In: ICML, pp. 809–816 (2011)

    Google Scholar 

  19. Paulheim, H., Bizer, C.: Type inference on noisy RDF data. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 510–525. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41335-3_32

    CrossRef  Google Scholar 

  20. Sun, Z., Deng, Z., Nie, J., Tang, J.: Rotate: knowledge graph embedding by relational rotation in complex space. In: ICLR, pp. 1–18 (2019)

    Google Scholar 

  21. Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.P.: Composition-based multi-relational graph convolutional networks. In: ICLR, pp. 1–15 (2020)

    Google Scholar 

  22. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR, pp. 1–12 (2018)

    Google Scholar 

  23. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI, pp. 1112–1119 (2014)

    Google Scholar 

  24. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of knowledge graphs with entity descriptions. In: AAAI, pp. 2659–2665 (2016)

    Google Scholar 

  25. Xie, R., Liu, Z., Sun, M.: Representation learning of knowledge graphs with hierarchical types. In: IJCAI, pp. 2965–2971 (2016)

    Google Scholar 

  26. Xu, B., Zhang, Y., Liang, J., Xiao, Y., Hwang, S., Wang, W.: Cross-lingual type inference. In: Navathe, S.B., Wu, W., Shekhar, S., Du, X., Wang, X.S., Xiong, H. (eds.) DASFAA 2016. LNCS, vol. 9642, pp. 447–462. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32025-0_28

    CrossRef  Google Scholar 

  27. Yaghoobzadeh, Y., Adel, H., Schütze, H.: Corpus-level fine-grained entity typing. J. Artif. Intell. Res. 61, 835–862 (2018). https://doi.org/10.1613/jair.5601

    MathSciNet  CrossRef  MATH  Google Scholar 

  28. Yaghoobzadeh, Y., Schütze, H.: Multi-level representations for fine-grained typing of knowledge base entities. In: EACL, pp. 578–589 (2017). https://doi.org/10.18653/v1/e17-1055

  29. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR, pp. 1–12 (2015)

    Google Scholar 

  30. Zhao, Y., Li, Z., Deng, W., Xie, R., Li, Q.: Learning entity type structured embeddings with trustworthiness on noisy knowledge graphs. Knowl. Based Syst. 215, 106630 (2021). https://doi.org/10.1016/j.knosys.2020.106630

  31. Zhao, Y., Zhang, A., Xie, R., Liu, K., Wang, X.: Connecting embeddings for knowledge graph entity typing. In: ACL, pp. 6419–6428 (2020). https://doi.org/10.18653/v1/2020.acl-main.572

  32. Zhu, Q., et al.: Collective multi-type entity alignment between knowledge graphs. In: WWW, pp. 2241–2252 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61976032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanyu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Zou, C., An, J., Li, G. (2022). Knowledge Graph Entity Type Prediction with Relational Aggregation Graph Attention Network. In: , et al. The Semantic Web. ESWC 2022. Lecture Notes in Computer Science, vol 13261. Springer, Cham. https://doi.org/10.1007/978-3-031-06981-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06981-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06980-2

  • Online ISBN: 978-3-031-06981-9

  • eBook Packages: Computer ScienceComputer Science (R0)