Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, vol. 26 (2013)
Google Scholar
Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)
Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Guo, W., et al.: Dual graph enhanced embedding neural network for ctrprediction. arXiv preprint arXiv:2106.00314 (2021)
He, R., McAuley, J.: Ups and downs: modeling the visual evolution of fashion trends with one-class collaborative filtering. In: Proceedings of the 25th International Conference on World Wide Web, pp. 507–517 (2016)
Google Scholar
Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939 (2015)
Huang, J., Zhao, W.X., Dou, H., Wen, J.-R., Chang, E.Y.: Improving sequential recommendation with knowledge-enhanced memory networks. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 505–514 (2018)
Google Scholar
Huang, X., Qian, S., Fang, Q., Sang, J., Xu, C.: Meta-path augmented sequential recommendation with contextual co-attention network. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 16(2), 1–24 (2020)
CrossRef
Google Scholar
Kang, W.-C., McAuley, J.: Self-attentive sequential recommendation. In: 2018 IEEE International Conference on Data Mining (ICDM), pp. 197–206. IEEE (2018)
Google Scholar
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kosinski, M., Stillwell, D., Graepel, T.: Private traits and attributes are predictable from digital records of human behavior. Proc. Natl. Acad. Sci. 110(15), 5802–5805 (2013)
CrossRef
Google Scholar
Li, J., Ren, P., Chen, Z., Ren, Z., Lian, T., Ma, J.: Neural attentive session-based recommendation. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1419–1428 (2017)
Google Scholar
Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)
Google Scholar
Long, X., et al.: Social recommendation with self-supervised metagraph informax network. arXiv preprint arXiv:2110.03958 (2021)
Ma, W., et al.: Jointly learning explainable rules for recommendation with knowledge graph. In: The World Wide Web Conference, pp. 1210–1221 (2019)
Google Scholar
Oono, K., Suzuki, T.: Graph neural networks exponentially lose expressive power for node classification. arXiv preprint arXiv:1905.10947 (2019)
Rendle, S.: Factorization machines. In: IEEE International Conference on Data Mining, pp. 995–1000. IEEE (2010)
Google Scholar
Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618 (2012)
Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized Markov chains for next-basket recommendation. In: Proceedings of the 19th International Conference on World Wide Web, pp. 811–820 (2010)
Google Scholar
Shani, G., Heckerman, D., Brafman, R.I., Boutilier, C.: An MDP-based recommender system. J. Mach. Learn. Res. 6(9) (2005)
Google Scholar
Sun, F., et al.: BERT4Rec: sequential recommendation with bidirectional encoder representations from transformer. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 1441–1450 (2019)
Google Scholar
Tang, J., Wang, K.: Personalized top-n sequential recommendation via convolutional sequence embedding. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, pp. 565–573 (2018)
Google Scholar
Taylor, W.L.: “Cloze procedure’’: a new tool for measuring readability. J. Q. 30(4), 415–433 (1953)
Google Scholar
Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning, pp. 2071–2080. PMLR (2016)
Google Scholar
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Google Scholar
Wang, C., Ma, W., Zhang, M., Chen, C., Liu, Y., Ma, S.: Toward dynamic user intention: temporal evolutionary effects of item relations in sequential recommendation. ACM Trans. Inf. Syst. (TOIS) 39(2), 1–33 (2020)
Google Scholar
Wang, C., Zhang, M., Ma, W., Liu, Y., Ma, S.: Make it a chorus: knowledge-and time-aware item modeling for sequential recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 109–118 (2020)
Google Scholar
Wang, M., Qiu, L., Wang, X.: A survey on knowledge graph embeddings for link prediction. Symmetry 13(3), 485 (2021)
CrossRef
Google Scholar
Wang, P., Fan, Y., Xia, L., Zhao, W.X., Niu, S., Huang, J.: Kerl: a knowledge-guided reinforcement learning model for sequential recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 209–218 (2020)
Google Scholar
Wang, X., He, X., Cao, Y., Liu, M., Chua, T.-S.: KGAT: knowledge graph attention network for recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 950–958 (2019)
Google Scholar
Wu, L., Yang, Y., Zhang, K., Hong, R., Fu, Y., Wang, M.: Joint item recommendation and attribute inference: an adaptive graph convolutional network approach. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 679–688 (2020)
Google Scholar
Xia, L., et al.: Knowledge-enhanced hierarchical graph transformer network for multi-behavior recommendation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 5, pp. 4486–4493 (2021)
Google Scholar
Xie, T., Xu, Y., Chen, L., Liu, Y., Zheng, Z.: Sequential recommendation on dynamic heterogeneous information network. In: 2021 IEEE 37th International Conference on Data Engineering (ICDE), pp. 2105–2110. IEEE (2021)
Google Scholar
Xin, X., He, X., Zhang, Y., Zhang, Y., Jose, J.: Relational collaborative filtering: modeling multiple item relations for recommendation. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 125–134 (2019)
Google Scholar
Yang, B., Yih, W.-T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)
Yang, Z., Dong, S., Hu, J.: GFE: general knowledge enhanced framework for explainable sequential recommendation. Knowl.-Based Syst. 230, 107375 (2021)
Google Scholar
Yuan, F., Karatzoglou, A., Arapakis, I., Jose, J.M., He, X.: A simple convolutional generative network for next item recommendation. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 582–590 (2019)
Google Scholar
Zhang, T., et al.: Feature-level deeper self-attention network for sequential recommendation. In: IJCAI, pp. 4320–4326 (2019)
Google Scholar
Zhao, X., Cheng, Z., Zhu, L., Zheng, J., Li, X.: UGRec: modeling directed and undirected relations for recommendation. arXiv preprint arXiv:2105.04183 (2021)
Zhou, K., et al.: S3-Rec: self-supervised learning for sequential recommendation with mutual information maximization. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 1893–1902 (2020)
Google Scholar
Zhu, Q., Zhou, X., Wu, J., Tan, J., Guo, L.: A knowledge-aware attentional reasoning network for recommendation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, pp. 6999–7006 (2020)
Google Scholar