Behnke, L.: (2012). https://github.com/lbehnke/hierarchical-clustering-java
Blaschke, C., Valencia, A.: Automatic ontology construction from the literature. Genome Inform. 13, 201–213 (2002)
Google Scholar
Bleier, S.: (2000). https://gist.github.com/sebleier/554280
Dera, E., Frasincar, F., Schouten, K., Zhuang, L.: SASOBUS: semi-automatic sentiment domain ontology building using Synsets. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12123, pp. 105–120. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49461-2_7
CrossRef
Google Scholar
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT 2019), pp. 4171–4186. ACL (2019)
Google Scholar
Dragoni, M., Donadello, I., Cambria, E.: OntoSenticNet 2: Enhancing reasoning within sentiment analysis. IEEE Intell. Syst. 37(1) (2022)
Google Scholar
Dragoni, M., Tettamanzi, A., da Costa Pereira, C.: DRANZIERA: an evaluation protocol for multi-domain opinion mining. In: 10th International Conference on Language Resources and Evaluation (LREC 2016), pp. 267–272. ELRA (2016)
Google Scholar
Gugger, S., Howard, J.: AdamW and super-convergence is now the fastest way to train neural nets. fast.ai (2018)
Google Scholar
ten Haaf, F., et al.: WEB-SOBA: word embeddings-based semi-automatic ontology building for aspect-based sentiment classification. In: Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 340–355. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77385-4_20
CrossRef
Google Scholar
Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations (ICLR 2019). OpenReview.net (2019)
Google Scholar
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: 27th Annual Conference on Neural Information Processing Systems (NIPS 2013), pp. 3111–3119. Curran Associates (2013)
Google Scholar
Peters, M.E., et al.: Deep contextualized word representations. In: 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT 2018), pp. 2227–2237. ACL (2018)
Google Scholar
Pontiki, M., et al.: SemEval-2016 task 5: aspect-based sentiment analysis. In: 10th International Workshop on Semantic Evaluation (SemEval 2016), pp. 19–30. ACL (2016)
Google Scholar
Schouten, K., Frasincar, F.: Survey on aspect-level sentiment analysis. IEEE Trans. Knowl. Data Eng. 28(3), 813–830 (2015)
CrossRef
Google Scholar
Schouten, K., Frasincar, F.: Ontology-driven sentiment analysis of product and service aspects. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 608–623. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_39
CrossRef
Google Scholar
Schouten, K., Frasincar, F., de Jong, F.: Ontology-enhanced aspect-based sentiment analysis. In: Cabot, J., De Virgilio, R., Torlone, R. (eds.) ICWE 2017. LNCS, vol. 10360, pp. 302–320. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60131-1_17
CrossRef
Google Scholar
Toutanova, K., Manning, C.D.: Enriching the knowledge sources used in a maximum entropy part-of-speech tagger. In: 2000 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora (EMNLP 2010), pp. 63–70. ACL (2000)
Google Scholar
Truşcǎ, M.M., Wassenberg, D., Frasincar, F., Dekker, R.: A hybrid approach for aspect-based sentiment analysis using deep contextual word embeddings and hierarchical attention. In: Bielikova, M., Mikkonen, T., Pautasso, C. (eds.) ICWE 2020. LNCS, vol. 12128, pp. 365–380. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50578-3_25
CrossRef
Google Scholar
Wallaart, O., Frasincar, F.: A hybrid approach for aspect-based sentiment analysis using a lexicalized domain ontology and attentional neural models. In: Hitzler, P., Fernández, M., Janowicz, K., Zaveri, A., Gray, A.J.G., Lopez, V., Haller, A., Hammar, K. (eds.) ESWC 2019. LNCS, vol. 11503, pp. 363–378. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21348-0_24
CrossRef
Google Scholar
Yelp (2019). https://www.yelp.com/dataset
Zhuang, L., Schouten, K., Frasincar, F.: SOBA: semi-automated ontology builder for aspect-based sentiment analysis. J. Web Semant. 60, 100–544 (2020)
CrossRef
Google Scholar