Abstract
Typical approaches for minimizing the round complexity of multiparty computation (MPC) come at the cost of increased communication complexity (CC) or the reliance on setup assumptions. A notable exception is the recent work of Ananth et al. [TCC 2019], which used Functional Encryption (FE) combiners to obtain a round optimal (two-round) semi-honest MPC in the plain model with a CC proportional to the depth and input-output length of the circuit being computed—we refer to such protocols as circuit scalable. This leaves open the question of obtaining communication efficient protocols that are secure against malicious adversaries in the plain model, which we present in this work. Concretely, our two main contributions are:
1) We provide a round-preserving black-box compiler that compiles a wide class of MPC protocols into circuit-scalable maliciously secure MPC protocols in the plain model, assuming (succinct) FE combiners.
2) We provide a round-preserving black-box compiler that compiles a wide class of MPC protocols into circuit-independent—i.e., with a CC that depends only on the input-output length of the circuit—maliciously secure MPC protocols in the plain model, assuming Multi-Key Fully-Homomorphic Encryption (MFHE). Our constructions are based on a new compiler that turns a wide class of MPC protocols into k-delayed-input function MPC protocols (a notion we introduce), where the function that is being computed is specified only in the k-th round of the protocol.
As immediate corollaries of our two compilers, we derive (1) the first round-optimal and circuit-scalable maliciously secure MPC, and (2) the first round-optimal and circuit-independent maliciously secure MPC in the plain model. The latter MPC achieves the best to-date CC for a round-optimal malicious MPC protocol. In fact, it is even communication-optimal when the output size of the function being evaluated is smaller than its input size (e.g., for boolean functions). All of our results are based on standard polynomial time assumptions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A malicious adversary attacks the protocol following an arbitrary probabilistic polynomial-time strategy. Unless stated differently, when we talk about the security of an MPC protocol against semi-honest or malicious adversaries we assume that up to \(n-1\) parties can be corrupted, where n is the number of parties.
- 2.
We stress that in our work the size of the circuit is always related to the security parameter via a polynomial p. We use the term circuit-independent for MPC protocols whose communication complexity depend on the security parameter, the size of the input and output, and does not depend on p. The same argument holds for circuit-scalable MPC protocols.
- 3.
In the communication model used in [33] in each round only one party can speak. Hence they obtain the best possible security guarantees in such a communication model.
- 4.
Unless otherwise specified, all our results are proved secure in the dishonest majority setting.
- 5.
We require the first 2 rounds of the MPC protocol to be independent from the inputs.
- 6.
We recall that a semi-malicious adversary behaves like a semi-honest adversary with the exception that it decides the randomness and the input used to run the protocol.
- 7.
All our result are with respect to black-box simulation.
- 8.
R is parsed as n strings and each of the strings is used to generate a different master secret key.
- 9.
Note that only the committed message is sent, not the randomness \(\rho _{i}^{1-i}\).
- 10.
We recall that \(P_0^i\) and \(P_1^i\) do not need to use the input to compute the first \(k-1\) rounds, nonetheless we can specify the input of \(P_i^1\) at the very beginning of the protocol.
- 11.
Any \(k'\)-delayed-input function MPC with \(k'>3\) can be turned into a 3-delayed-input function MPC protocol since the function received in round 2 can be ignored up to round \(k'-1\).
References
Ananth, P., Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: From FE combiners to secure MPC and back. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part I. LNCS, vol. 11891, pp. 199–228. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_9
Ananth, P., Jain, A., Jin, Z., Malavolta, G.: Multikey fhe in the plain model. Cryptology ePrint Archive, Report 2020/180 (2020). https://eprint.iacr.org/2020/180
Asharov, G., Jain, A., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. Cryptology ePrint Archive, Report 2011/613 (2011). https://eprint.iacr.org/2011/613
Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai, A.: Promise zero knowledge and its applications to round optimal MPC. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 459–487. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_16
Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990. https://doi.org/10.1145/100216.100287
Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_17
Blum, M.: Coin flipping by telephone. In: Gersho, A. (ed.) CRYPTO’81, vol. ECE Report 82–04, pp. 11–15. U.C. Santa Barbara, Dept. of Elec. and Computer Eng. (1981)
Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16
Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimizing rounds, communication, and computation. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 163–193. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_6
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012, pp. 309–325. ACM, January 2012. https://doi.org/10.1145/2090236.2090262
Rai Choudhuri, A., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Round optimal secure multiparty computation from minimal assumptions. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 291–319. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_11
Choudhuri, A.R., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Oblivious transfer from trapdoor permutations in minimal rounds. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part II. LNCS, vol. 13043, pp. 518–549. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90453-1_18
Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Round-optimal secure two-party computation from trapdoor permutations. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 678–710. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_23
Ciampi, M., Ostrovsky, R., Waldner, H., Zikas, V.: Round-optimal and communication-efficient multiparty computation. Cryptology ePrint Archive, Report 2020/1437 (2020). https://eprint.iacr.org/2020/1437
Cohen, R., Shelat, A., Wichs, D.: Adaptively secure MPC with sublinear communication complexity. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 30–60. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_2
Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its applications. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 93–122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_4
Friolo, D., Masny, D., Venturi, D.: A black-box construction of fully-simulatable, round-optimal oblivious transfer from strongly uniform key agreement. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part I. LNCS, vol. 11891, pp. 111–130. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_5
Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round complexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_16
Garg, S., Sahai, A.: Adaptively secure multi-party computation with dishonest majority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 105–123. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_8
Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear maps. In: Umans, C. (ed.) 58th FOCS, pp. 588–599. IEEE Computer Society Press, October 2017. https://doi.org/10.1109/FOCS.2017.60
Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_16
Goldreich, O.: The Foundations of Cryptography - Volume 2 Basic Applications. Cambridge University Press, Cambridge (2004)
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC, pp. 218–229. ACM Press, May 1987. https://doi.org/10.1145/28395.28420
Goyal, V.: Constant round non-malleable protocols using one way functions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 695–704. ACM Press, June 2011. https://doi.org/10.1145/1993636.1993729
Halevi, S., Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Round-optimal secure multi-party computation. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 488–520. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_17
Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_31
Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_32
Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_21
Katz, J., Ostrovsky, R., Smith, A.: Round efficiency of multi-party computation with a dishonest majority. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 578–595. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_36
Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM STOC, pp. 20–31. ACM Press, May 1988. https://doi.org/10.1145/62212.62215
Lindell, Y., Pinkas, B.: A proof of security of yao’s protocol for two-party computation. J. Cryptol. 22(2), 161–188 (2008). https://doi.org/10.1007/s00145-008-9036-8
López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Karloff, H.J., Pitassi, T. (eds.) 44th ACM STOC, pp. 1219–1234. ACM Press, May 2012. https://doi.org/10.1145/2213977.2214086
Morgan, A., Pass, R., Polychroniadou, A.: Succinct non-interactive secure computation. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 216–245. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_8
Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_26
O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556 (2010). https://eprint.iacr.org/2010/556
Paskin-Cherniavsky, A.: Secure computation with minimal interaction. Ph.D. thesis, Computer Science Department, Technion (2012)
Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest majority. In: Babai, L. (ed.) 36th ACM STOC, pp. 232–241. ACM Press, June 2004. https://doi.org/10.1145/1007352.1007393
Pass, R., Wee, H.: Constant-round non-malleable commitments from sub-exponential one-way functions. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 638–655. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_32
Quach, W., Wee, H., Wichs, D.: Laconic function evaluation and applications. In: Thorup, M. (ed.) 59th FOCS, pp. 859–870. IEEE Computer Society Press, October 2018. https://doi.org/10.1109/FOCS.2018.00086
Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27
Wee, H.: Black-box, round-efficient secure computation via non-malleability amplification. In: 51st FOCS, pp. 531–540. IEEE Computer Society Press, October 2010. https://doi.org/10.1109/FOCS.2010.87
Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986. https://doi.org/10.1109/SFCS.1986.25
Acknowledgments
Work done in part while the fourth author was at the University of Edinburgh.
The first author is supported in part by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement 780477 (PRIVILEDGE). The second author is supported in part by DARPA under Cooperative Agreement HR0011-20-2-0025, NSF grant CNS-2001096, US-Israel BSF grant 2015782, Cisco Research Award, Google Faculty Award, JP Morgan Faculty Award, IBM Faculty Research Award, Xerox Faculty Research Award, OKAWA Foundation Research Award, B. John Garrick Foundation Award, Teradata Research Award, Lockheed-Martin Research Award and Sunday Group. The third author is supported in part by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement 780108 (FENTEC). The fourth author is supported in part by NSF grant no. 2055599 and by Sunday Group.
The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of DARPA, the Department of Defense, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes not withstanding any copyright annotation therein.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Ciampi, M., Ostrovsky, R., Waldner, H., Zikas, V. (2022). Round-Optimal and Communication-Efficient Multiparty Computation. In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol 13275. Springer, Cham. https://doi.org/10.1007/978-3-031-06944-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-06944-4_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06943-7
Online ISBN: 978-3-031-06944-4
eBook Packages: Computer ScienceComputer Science (R0)