Skip to main content

Dialogues and Proofs; Yankov’s Contribution to Proof Theory

  • Chapter
  • First Online:
V.A. Yankov on Non-Classical Logics, History and Philosophy of Mathematics

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 24))

  • 308 Accesses

Abstract

In the 1990s Yankov published two papers containing important contributions to proof theory and based on the application of a dialogical interpretation of proofs. In both cases the method is used for providing constructive proofs of important metalogical results concerning classical logic and fundamental mathematical theories. In the first paper it is shown that impredicative extensions of intuitionistic versions of arithmetic, analysis and set theory, enriched with suitable bar induction schemata, are sufficiently strong for proving the consistency of their classical counterparts. In the second paper the same method is applied to provide a constructive proof of the completeness theorem for classical logic. In both cases a version of a one-sided sequent calculus in Schütte-style is used and cut elimination is established in the second case. Although the obtained results are important, and the applied method is original and interesting, they have not received the attention they deserve from the wider community of researchers in proof theory. In this paper we briefly recall the content of both papers. We focus on essential features of Yankov’s approach and provide comparisons with other results of similar character.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Nowadays the view of Tait is often accepted according to which finitism is identified with the quantifier-free system of primitive recursive arithmetic PRA.

  2. 2.

    In fact, a similar system of this kind independently introduced by Jaśkowski (1934) was called ‘suppositional calculus’.

  3. 3.

    More on the history and types of natural deduction and sequent calculi is in Indrzejczak (2010).

  4. 4.

    In the meantime he proved in a purely finitist way the consistency of simple type theory (Gentzen 1936b) but without the axiom of infinity so it is a rather weak result.

  5. 5.

    The second edition is preferred since it contains also valuable appendices written by leading researchers in the field.

  6. 6.

    Such a result was already present in Gentzen (1934).

  7. 7.

    In particular research concerning bounded arithmetic (Parikh, Buss), reverse mathematics or predicative analysis were not mentioned since they are not related to Yankov’s work.

  8. 8.

    Illustrated with an anecdote about two chess players who have a simultaneous match with a chess master and successively repeat his previous moves.

  9. 9.

    Classically the fan theorem is just the contrapositive of König’s lemma, but intuitionistically they are not equivalent.

References

  • Coquand, T. (1995). A semantics for classical arithmetic. The Journal of Symbolic Logic, 60(1), 325–337.

    Article  MathSciNet  MATH  Google Scholar 

  • Gentzen, G. (1934). Untersuchungen über das Logische Schliessen. Mathematische Zeitschrift, 39, 176–210 and 39, 405–431.

    Google Scholar 

  • Gentzen, G. (1936a). Die Widerspruchsfreiheit der reinen Zahlentheorie’. Mathematische Annalen, 112, 493–565.

    Google Scholar 

  • Gentzen, G. (1936b). Die Widerspruchsfreiheit der Stufenlogik. Mathematische Zeitschrift, 3, 357–366.

    Google Scholar 

  • Gentzen, G. (1936c). Die Unendlichkeitsbegriff in der Mathematik, Semester-Berichte, Münster in: W., 9th Semester, Winter 1936–37, 65–80. Mathematische Annalen, 112, 493–565.

    Google Scholar 

  • Gentzen, G. (1938). Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie, Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften. New Series, 4, Leipzig 19–44.

    Google Scholar 

  • Gentzen, G. (1943). Beweisbarkeit und Unbeweisbarkeit der Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie. Mathematische Annalen, 120, 140–161.

    Article  MATH  Google Scholar 

  • Girard, J. Y. (2011). The blind spot. Lectures on logic: European mathematical society.

    Google Scholar 

  • Hintikka, J. (1968). Language-games for quantifiers. In Studies in logical theory (pp. 46–72). Blackwell.

    Google Scholar 

  • Indrzejczak, A. (2010). Natural deduction. Hybrid systems and modal logics. Springer.

    Google Scholar 

  • Indrzejczak, A. (2018). Rule-generation theorem and its applications. The Bulletin of the Section of Logic, 47(4), 265–282.

    Article  MathSciNet  MATH  Google Scholar 

  • Jaśkowski, S. (1934). On the rules of suppositions in formal logic. Studia Logica, 1, 5–32.

    MATH  Google Scholar 

  • Lorenzen, P. (1961). Ein dialogisches Konstruktivitätskriterium. In Infinitistic methods (pp. 193–200). Warszawa: PWN.

    Google Scholar 

  • Mendelson, E. (1964). Introduction to mathematical logic. Chapman and Hall.

    Google Scholar 

  • Negri, S., & von Plato, J. (2001). Structural proof theory. Cambridge: Cambridge University Press.

    Google Scholar 

  • Novikov, P. S. (1943). On the consistency of certain logical calculus. Matematiceskij Sbornik, 1254, 230–260.

    Google Scholar 

  • von Plato, J. (2008). Gentzen’s proof of normalization for ND. The Bulletin of Symbolic Logic, 14(2), 240–257.

    Article  MathSciNet  MATH  Google Scholar 

  • Pohlers, W. (2009). Proof theory. The first steps into impredicativity. Springer.

    Google Scholar 

  • Prawitz, D. (1965). Natural deduction. Stockholm: Almqvist and Wiksell.

    Google Scholar 

  • Raggio, A. (1965). Gentzen’s Hauptsatz for the systems NI and NK. Logique et Analyse, 8, 91–100.

    MathSciNet  MATH  Google Scholar 

  • Rathjen, M. (1999). The realm of ordinal analysis. In B. S. Cooper & J. K. Truss (Eds.), Sets and proofs (pp. 219–280). Cambridge.

    Google Scholar 

  • Rathjen, M. (2006). A note on bar induction in constructive set theory. Mathematical Logic Quarterly, 52, 253–258.

    Article  MathSciNet  MATH  Google Scholar 

  • Rathjen, M., Sieg, W. (2018). Proof theory. The Stanford encyclopedia of philosophy, E. Zalta (Ed.). https://plato.stanford.edu/archives/fall2018/entries/proof-theory/.

  • Schütte, K. (1977). Proof theory. Berlin: Springer.

    Google Scholar 

  • Schwichtenberg, H. (1977). Proof theory. In J. Barwise (Ed.), Handbook of mathematical logic (Vol. 1). Amsterdam: North-Holland.

    Google Scholar 

  • Shoenfield, J. R. (1967). Mathematical logic. Addison-Wesley.

    Google Scholar 

  • Spector, C. (1962). Provably recursive functionals in analysis: A consistency proof of analysis by an extension of principles formulated in current intuitionistic mathematics. American Mathematical Society, Providence, 5, 1–27.

    MathSciNet  MATH  Google Scholar 

  • Szabo, M. E. (1969). The collected papers of Gerhard Gentzen. Amsterdam: North-Holland.

    Google Scholar 

  • Tait, W. W. (1968). Normal derivability in classical logic. In The syntax and semantics of infinitary languages, LNM (Vol. 72, pp. 204–236).

    Google Scholar 

  • Takeuti, G. (1987). Proof theory. Amsterdam: North-Holland.

    Google Scholar 

  • Yankov, V. A. (1963). On realizable formulas of propositional logic’. Soviet Mathematics Doklady, 4, 1035–1037.

    MATH  Google Scholar 

  • Yankov, V. A. (1995). Dialogue theory of proofs for arithmetic, analysis and set theory. Russian Academy of Science Izvestiya: Mathematics, 44(3), 571–600. [Russian version 1994].

    Google Scholar 

  • Yankov, V. A. (1997). Dialogue interpretation of the classical predicate calculus. Izvestiya RAN: Seriya Matematicheskaya, 611, 215–224.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Indrzejczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Indrzejczak, A. (2022). Dialogues and Proofs; Yankov’s Contribution to Proof Theory. In: Citkin, A., Vandoulakis, I.M. (eds) V.A. Yankov on Non-Classical Logics, History and Philosophy of Mathematics. Outstanding Contributions to Logic, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-031-06843-0_3

Download citation

Publish with us

Policies and ethics