Abstract
The computational content of constructive metric completeness is the operator that computes limits of Cauchy sequences. It can be used to construct certified programs that compute interesting transcendental real numbers from sequences of approximations. The desired nondeterministic version of it would be to nondeterministically compute real numbers from nondeterministic approximations. However, it is not obvious how nondeterministic metric completeness should be formalized.
We extend previous work on the formalization of exact real computation by primitive properties of nondeterminism. We show that by these properties, various forms of nondeterministic metric completeness can be derived without extending the axiomatic structure of constructive real numbers. We further implement our theory in the Coq proof assistant and use Coq’s code extraction features to extract efficient exact real computation programs using several forms of nondeterministic computation.
Keywords
- Constructive real numbers
- Formal proofs
- Exact real number computation
- Program extraction
- Nondeterminism
Holger Thies is supported by JSPS KAKENHI Grant Number JP20K19744. Sewon Park is supported by JSPS KAKENHI Grant number JP18H03203. This project has received funding from the EU’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 731143. The authors thank Franz Brauße and Norbert Müller for helpful discussions.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
in the sense of computable analysis [30].
- 2.
Nondeterministic functions are also known as multivalued functions.
References
Balluchi, A., Casagrande, A., Collins, P., Ferrari, A., Villa, T., Sangiovanni-Vincentelli, A.: Ariadne: a framework for reachability analysis of hybrid automata. In: Proceedings 17th International Symposium on Mathematical Theory of Networks and Systems. Kyoto (2006)
Berger, U., Tsuiki, H.: Intuitionistic fixed point logic. Ann. Pure Appl. Log. 172(3), 102903 (2021). https://doi.org/10.1016/j.apal.2020.102903
Bishop, E.A.: Foundations of Constructive Analysis (1967)
Boldo, S., Melquiond, G.: Computer Arithmetic and Formal Proofs - Verifying Floating-point Algorithms with the Coq System. ISTE Press (2017). https://www.elsevier.com/books/computer-arithmetic-and-formal-proofs/boldo/978-1-78548-112-3
Brattka, V.: The emperor’s new recursiveness: the epigraph of the exponential function in two models of computability. In: Ito, M., Imaoka, T. (eds.) Words, Languages & Combinatorics III, pp. 63–72. World Scientific Publishing, Singapore (2003), iCWLC 2000, Kyoto, Japan, 14–18 March 2000
Brattka, V., Hertling, P.: Feasible real random access machines. J. Complex. 14(4), 490–526 (1998). https://doi.org/10.1006/jcom.1998.0488, https://www.sciencedirect.com/science/article/pii/S0885064X98904885
Bridges, D.S.: Constructive mathematics: a foundation for computable analysis. Theor. Comput. Sci. 219(1), 95–109 (1999). https://doi.org/10.1016/S0304-3975(98)00285-0, https://www.sciencedirect.com/science/article/pii/S0304397598002850
Collins, P., Geretti, L., Casagrande, A., Zapreev, I., Zivanovic, S.: Ariadne (2005–20). http://www.ariadne-cps.org/
Cooke, R.L.: Classical Algebra: its Nature, Origins, and Uses. John Wiley & Sons (2008)
Cruz-Filipe, L., Geuvers, H., Wiedijk, F.: C-CoRN, the constructive coq repository at Nijmegen. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 88–103. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27818-4_7
Brausse, F., Norbert Müller, R.R.: Intensionality and multi-valued limits. In: Proceedings 15th International Conference on Computability and Complexity in Analysis (CCA), p. 11 (2018)
Hertling, P.: A real number structure that is effectively categorical. Math. Log. Q. 45, 147–182 (1999). https://doi.org/10.1002/malq.19990450202
Hofmann, M.: On the interpretation of type theory in locally cartesian closed categories. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 427–441. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0022273
Konečný, M., Park, S., Thies, H.: Axiomatic reals and certified efficient exact real computation. In: Silva, A., Wassermann, R., de Queiroz, R. (eds.) WoLLIC 2021. LNCS, vol. 13038, pp. 252–268. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88853-4_16
Konečný, M.: Verified exact real limit computation. In: Proceedings 15th International Conference on Computability and Complexity in Analysis (CCA), pp. 9–10 (2018)
Konečný, M.: aern2-real: A Haskell library for exact real number computation. https://hackage.haskell.org/package/aern2-real (2021)
Letouzey, P.: A new extraction for Coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp. 200–219. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39185-1_12
Letouzey, P.: Extraction in Coq: an overview. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 359–369. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69407-6_39
Luckhardt, H.: A fundamental effect in computations on real numbers. Theor. Comput. Sci. 5(3), 321 – 324 (1977). https://doi.org/10.1016/0304-3975(77)90048-2, http://www.sciencedirect.com/science/article/pii/0304397577900482
Müller, N.T.: Implementing limits in an interactive realram. In: 3rd Conference on Real Numbers and Computers, 1998, Paris. vol. 13, p. 26 (1998)
Müller, N.T.: The iRRAM: exact arithmetic in C++. In: Blanck, J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45335-0_14
Müller, N.T., Uhrhan, C.: Some steps into verification of exact real arithmetic. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 168–173. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28891-3_17
Neumann, E., Pauly, A.: A topological view on algebraic computation models. J. Complex. 44, 1–22 (2018)
Park, S., et al.: Foundation of computer (algebra) analysis systems: Semantics, logic, programming, verification. arXiv e-prints pp. arXiv-1608 (2016)
Reus, B.: Realizability models for type theories. Electron. Notes Theor. Comput. Sci. 23(1), 128–158 (1999)
Seely, R.A.G.: Locally cartesian closed categories and type theory. Math. Proc. Camb. Philoso. Soc. 95(1), 33–48 (1984). https://doi.org/10.1017/S0305004100061284
Specker, E.: Nicht konstruktiv beweisbare Sätze der analysis. J. Symb. Logic 14(3), 145–158 (1949)
Steinberg, F., Thery, L., Thies, H.: Computable analysis and notions of continuity in Coq. Logical Meth. Comput. Sci. 17(2) (2021). https://lmcs.episciences.org/7478
Univalent Foundations Program, T.: Homotopy Type Theory: Univalent Foundations of Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study (2013)
Weihrauch, K.: Computable Analysis. Springer, Berlin (2000). https://doi.org/10.1007/978-3-642-56999-9
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Konečný, M., Park, S., Thies, H. (2022). Certified Computation of Nondeterministic Limits. In: Deshmukh, J.V., Havelund, K., Perez, I. (eds) NASA Formal Methods. NFM 2022. Lecture Notes in Computer Science, vol 13260. Springer, Cham. https://doi.org/10.1007/978-3-031-06773-0_41
Download citation
DOI: https://doi.org/10.1007/978-3-031-06773-0_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06772-3
Online ISBN: 978-3-031-06773-0
eBook Packages: Computer ScienceComputer Science (R0)