Skip to main content

Certified Computation of Nondeterministic Limits

  • Conference paper
  • First Online:
Book cover NASA Formal Methods (NFM 2022)

Abstract

The computational content of constructive metric completeness is the operator that computes limits of Cauchy sequences. It can be used to construct certified programs that compute interesting transcendental real numbers from sequences of approximations. The desired nondeterministic version of it would be to nondeterministically compute real numbers from nondeterministic approximations. However, it is not obvious how nondeterministic metric completeness should be formalized.

We extend previous work on the formalization of exact real computation by primitive properties of nondeterminism. We show that by these properties, various forms of nondeterministic metric completeness can be derived without extending the axiomatic structure of constructive real numbers. We further implement our theory in the Coq proof assistant and use Coq’s code extraction features to extract efficient exact real computation programs using several forms of nondeterministic computation.

Holger Thies is supported by JSPS KAKENHI Grant Number JP20K19744. Sewon Park is supported by JSPS KAKENHI Grant number JP18H03203. This project has received funding from the EU’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 731143. The authors thank Franz Brauße and Norbert Müller for helpful discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    in the sense of computable analysis [30].

  2. 2.

    Nondeterministic functions are also known as multivalued functions.

References

  1. Balluchi, A., Casagrande, A., Collins, P., Ferrari, A., Villa, T., Sangiovanni-Vincentelli, A.: Ariadne: a framework for reachability analysis of hybrid automata. In: Proceedings 17th International Symposium on Mathematical Theory of Networks and Systems. Kyoto (2006)

    Google Scholar 

  2. Berger, U., Tsuiki, H.: Intuitionistic fixed point logic. Ann. Pure Appl. Log. 172(3), 102903 (2021). https://doi.org/10.1016/j.apal.2020.102903

  3. Bishop, E.A.: Foundations of Constructive Analysis (1967)

    Google Scholar 

  4. Boldo, S., Melquiond, G.: Computer Arithmetic and Formal Proofs - Verifying Floating-point Algorithms with the Coq System. ISTE Press (2017). https://www.elsevier.com/books/computer-arithmetic-and-formal-proofs/boldo/978-1-78548-112-3

  5. Brattka, V.: The emperor’s new recursiveness: the epigraph of the exponential function in two models of computability. In: Ito, M., Imaoka, T. (eds.) Words, Languages & Combinatorics III, pp. 63–72. World Scientific Publishing, Singapore (2003), iCWLC 2000, Kyoto, Japan, 14–18 March 2000

    Google Scholar 

  6. Brattka, V., Hertling, P.: Feasible real random access machines. J. Complex. 14(4), 490–526 (1998). https://doi.org/10.1006/jcom.1998.0488, https://www.sciencedirect.com/science/article/pii/S0885064X98904885

  7. Bridges, D.S.: Constructive mathematics: a foundation for computable analysis. Theor. Comput. Sci. 219(1), 95–109 (1999). https://doi.org/10.1016/S0304-3975(98)00285-0, https://www.sciencedirect.com/science/article/pii/S0304397598002850

  8. Collins, P., Geretti, L., Casagrande, A., Zapreev, I., Zivanovic, S.: Ariadne (2005–20). http://www.ariadne-cps.org/

  9. Cooke, R.L.: Classical Algebra: its Nature, Origins, and Uses. John Wiley & Sons (2008)

    Google Scholar 

  10. Cruz-Filipe, L., Geuvers, H., Wiedijk, F.: C-CoRN, the constructive coq repository at Nijmegen. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 88–103. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27818-4_7

    Chapter  Google Scholar 

  11. Brausse, F., Norbert Müller, R.R.: Intensionality and multi-valued limits. In: Proceedings 15th International Conference on Computability and Complexity in Analysis (CCA), p. 11 (2018)

    Google Scholar 

  12. Hertling, P.: A real number structure that is effectively categorical. Math. Log. Q. 45, 147–182 (1999). https://doi.org/10.1002/malq.19990450202

  13. Hofmann, M.: On the interpretation of type theory in locally cartesian closed categories. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 427–441. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0022273

    Chapter  Google Scholar 

  14. Konečný, M., Park, S., Thies, H.: Axiomatic reals and certified efficient exact real computation. In: Silva, A., Wassermann, R., de Queiroz, R. (eds.) WoLLIC 2021. LNCS, vol. 13038, pp. 252–268. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88853-4_16

    Chapter  MATH  Google Scholar 

  15. Konečný, M.: Verified exact real limit computation. In: Proceedings 15th International Conference on Computability and Complexity in Analysis (CCA), pp. 9–10 (2018)

    Google Scholar 

  16. Konečný, M.: aern2-real: A Haskell library for exact real number computation. https://hackage.haskell.org/package/aern2-real (2021)

  17. Letouzey, P.: A new extraction for Coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp. 200–219. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39185-1_12

    Chapter  MATH  Google Scholar 

  18. Letouzey, P.: Extraction in Coq: an overview. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 359–369. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69407-6_39

    Chapter  Google Scholar 

  19. Luckhardt, H.: A fundamental effect in computations on real numbers. Theor. Comput. Sci. 5(3), 321 – 324 (1977). https://doi.org/10.1016/0304-3975(77)90048-2, http://www.sciencedirect.com/science/article/pii/0304397577900482

  20. Müller, N.T.: Implementing limits in an interactive realram. In: 3rd Conference on Real Numbers and Computers, 1998, Paris. vol. 13, p. 26 (1998)

    Google Scholar 

  21. Müller, N.T.: The iRRAM: exact arithmetic in C++. In: Blanck, J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45335-0_14

    Chapter  Google Scholar 

  22. Müller, N.T., Uhrhan, C.: Some steps into verification of exact real arithmetic. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 168–173. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28891-3_17

    Chapter  Google Scholar 

  23. Neumann, E., Pauly, A.: A topological view on algebraic computation models. J. Complex. 44, 1–22 (2018)

    Article  MathSciNet  Google Scholar 

  24. Park, S., et al.: Foundation of computer (algebra) analysis systems: Semantics, logic, programming, verification. arXiv e-prints pp. arXiv-1608 (2016)

    Google Scholar 

  25. Reus, B.: Realizability models for type theories. Electron. Notes Theor. Comput. Sci. 23(1), 128–158 (1999)

    Article  Google Scholar 

  26. Seely, R.A.G.: Locally cartesian closed categories and type theory. Math. Proc. Camb. Philoso. Soc. 95(1), 33–48 (1984). https://doi.org/10.1017/S0305004100061284

    Article  MathSciNet  MATH  Google Scholar 

  27. Specker, E.: Nicht konstruktiv beweisbare Sätze der analysis. J. Symb. Logic 14(3), 145–158 (1949)

    Article  Google Scholar 

  28. Steinberg, F., Thery, L., Thies, H.: Computable analysis and notions of continuity in Coq. Logical Meth. Comput. Sci. 17(2) (2021). https://lmcs.episciences.org/7478

  29. Univalent Foundations Program, T.: Homotopy Type Theory: Univalent Foundations of Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study (2013)

  30. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000). https://doi.org/10.1007/978-3-642-56999-9

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Thies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Konečný, M., Park, S., Thies, H. (2022). Certified Computation of Nondeterministic Limits. In: Deshmukh, J.V., Havelund, K., Perez, I. (eds) NASA Formal Methods. NFM 2022. Lecture Notes in Computer Science, vol 13260. Springer, Cham. https://doi.org/10.1007/978-3-031-06773-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06773-0_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06772-3

  • Online ISBN: 978-3-031-06773-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics