Skip to main content

Endocrinological Myopathies

  • Chapter
  • First Online:
Acquired Neuromuscular Disorders
  • 489 Accesses

Abstract

Disorders in endocrinological pathways lead to manifest acquired or endogenous forms of myopathy. Imbalance disorders of protein synthesis, electrolytes, and carbohydrate can lead to severe forms of myopathies. The severity of endocrinopathies is important for the long-term outcome. In general, the main neuromuscular symptom is proximal weakness, sometimes in addition to myalgia and fiber atrophy. Endocrine myopathies are usually reversed by treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sindoni A, Rodolico C, Pappalardo MA, Portaro S, Benvenga S. Hypothyroid myopathy: a peculiar clinical presentation of thyroid failure. Review of the literature. Rev Endocr Metab Disord. 2016;17:499–519.

    Article  CAS  PubMed  Google Scholar 

  2. Engel AG. Neuromuscular manifestation of Grave’s disease. Mayo Clin Proc. 1972;47:919–25.

    CAS  PubMed  Google Scholar 

  3. Satoyoshi E, Murakami K, Kowa H, et al. Myopathy in thyrotoxicosis: with special emphasis on the effect of potassium ingestion on serum and urinary creatine. Neurology. 1963;13:645–58.

    Article  CAS  PubMed  Google Scholar 

  4. Millikan CH, Haines SF. The thyroid gland in relation to neuromuscular disease. Arch Intern Med. 1953;92:5–39.

    Article  CAS  Google Scholar 

  5. McComas AJ, Sica REP, McNabb AR, Goldberg WM, Uotpn ARM. Evidence for reversible motoneurone dysfunction in thyrotoxicosis. J Neurol Neurosurg Psychiatry. 1974;37:548–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gruener RG, Stern LZ, Payne C, Hannapel L. Hyperthyroid myopathy. Intracellular electrophysiological measurements in biopsied human intercostal muscle. J Neurol Sci. 1975;24:339.

    Article  CAS  PubMed  Google Scholar 

  7. Ruff R. Endocrine myopathies (hyper- and hypofunction of adrenal, thyroid, pituitary and parathyroid glands and iatrogenic steroid myopathy). In: Engel AG, Banker B, editors. Myology. New York: McGraw-Hill; 1986. p. 1871–906.

    Google Scholar 

  8. Kitamura K. On periodic paralysis. Nikon Zasshi. 1913;1:22–5.

    Google Scholar 

  9. McFadzean AJS, Yeung R. Periodic paralysis complicating thyrotoxicosis in Chinese. Br Med J. 1967;1:45.

    Article  Google Scholar 

  10. Shishiba Y, Shizume K, Sakuma M, Yamauchi H, Nakao K, Okinaka S. Studies on electrolyte metabolism in idiopathic and thyrotoxic periodic paralysis. Metabolism. 1966;15:153–62.

    Article  CAS  PubMed  Google Scholar 

  11. Shizume K, Shishiba Y, Sakuma M, Yamauchi H, Nakao K, Okinaka S. Studies on electrolyte metabolism in idiopathic and thyrotoxic periodic paralysis. Metabolism. 1966;15:138–44.

    Article  CAS  PubMed  Google Scholar 

  12. Au KA, Yeung RT. Thyrotoxic periodic paralysis. Arch Neurol. 1972;26:543–6.

    Article  CAS  PubMed  Google Scholar 

  13. Paninka RM, Carlos-Lima E, Lindsey SC, Kunii IS, Dias-da-Silva MR, Arcisio-Miranda M. Down-regulation of Kir2.6 channel by c-termini mutation D252N and its association with the susceptibility to thyrotoxic periodic paralysis. Neuroscience. 2017;346:197–202.

    Article  CAS  PubMed  Google Scholar 

  14. Schutta HA, Armitage JL. Thyrotoxic hypokalemic periodic paralysis. J Neuropathol Exp Neurol. 1969;28:321–36.

    Article  CAS  PubMed  Google Scholar 

  15. Spiro AJ, Hirano A, Beilin RL, Finkelstein JW. Cretinism with muscular hypertrophy (Kocher-Debré-Sémélaigne syndrome). Arch Neurol. 1970;23:340–9.

    Article  CAS  PubMed  Google Scholar 

  16. Yu J. Endocrine disorders and the neurologic manifestations. Ann Pediatr Endocrinol Metab. 2014;19:181–90.

    Article  Google Scholar 

  17. Tan Y, Gong Y, Dong M, Pei Z, Ren J. Role of autophagy in inherited metabolic and endocrine myopathies. Biochim Biophys Acta Mol Basis Dis. 2019;1865:48–55.

    Article  CAS  PubMed  Google Scholar 

  18. Noli L, Khorsandi SE, Pyle A, Giritharan G, Fogarty N, Capalbo A, et al. Effects of thyroid hormone on mitochondria and metabolism of human preimplantation embryos. Stem Cells. 2020;38(3):369–81. https://doi.org/10.1002/stem.3129.

    Article  CAS  PubMed  Google Scholar 

  19. Hurwitz L, McCormick D, Allen VJ. Reduced muscle α-glucosidase (acid maltase) in hypothyroid myopathy. Lancet. 1970;1:67–9.

    Article  CAS  PubMed  Google Scholar 

  20. Zybek-Kocik A, Sawicka-Gutaj N, Szczepanek-Parulska E, et al. The association between irisin and muscle metabolism in different thyroid disorders. Clin Endocrinol. 2018;88:460–7.

    Article  CAS  Google Scholar 

  21. Askari A, Vignos PJ, Moskowitz RA. Steroid myopathy in connective tissue disease. Am J Med. 1976;61:485.

    Article  CAS  PubMed  Google Scholar 

  22. Cushing H. Basophilic adenomas of pituitary body. Bull Johns Hopkins Hosp. 1932;50:13728.

    Google Scholar 

  23. Prineas J, Hall R, Barwick DD, Watson AJ. Myopathy with pigmentation following adrenalectomy for Cushing’s syndrome. Q J Med. 1968;37:63–77.

    CAS  PubMed  Google Scholar 

  24. Ohtani Y, Endo F, Matsuda J. Carnitine deficiency associated with valproic acid therapy. J Pediatr. 1982;101:782–5.

    Article  CAS  PubMed  Google Scholar 

  25. Silva MF, Aires CC, Luis PB, Ruiter JP, Jlst LI, Duran M, et al. Sodium valproate metabolism and its effects on mitochondrial fatty acids oxidation: a review. J Inherit Metab Dis. 2008;31:205–16.

    Article  CAS  PubMed  Google Scholar 

  26. Richter RW, Challenor JB, Pearson J, Kagen LJ, Hamilton LL, Ramsey WH. Acute myoglobinuria associated with heroin addiction. JAMA. 1971;216:1172.

    Article  CAS  PubMed  Google Scholar 

  27. Langer T, Levy RJ. Acute muscular syndrome associated with administration of clofibrate. N Engl J Med. 1968;379:856–8.

    Article  Google Scholar 

  28. Romin D, Ludatscher R, Cohen L. Clofibrate-induced muscular syndrome. Case report with ultrastructural findings and review of the literature. Isr J Med Sci. 1984;20:1082–6.

    Google Scholar 

  29. Whisnant JP, Espinosa RE, Kierland RR, Lambert EH. Chloroquine neuromyopathy. Mayo Clin Proc. 1963;38:501–13.

    CAS  Google Scholar 

  30. Itabashi HH, Koykmen E. Chloroquine neuromyopathy. A reversible granulovacuolar myopathy. Arch Pathol. 1972;93:209–18.

    CAS  PubMed  Google Scholar 

  31. McDonald RD, Engel AG. Experimental chloroquine myopathy. J Neuropathol Exp Neurol. 1970;29:479–99.

    Article  Google Scholar 

  32. Bolanos-Meade J, Zhou L, Hoke A, Corse A, Vogelsang G, Wagner KR. Hydroxy-chloroquine causes severe vacuolar myopathy in a patient with chronic graft-versus-host disease. Am J Hematol. 2005;78:306–9.

    Article  PubMed  Google Scholar 

  33. Abdel-Hamid H, Oddis CV, Lacomis D. Severe hydroxychloroquine myopathy. Muscle Nerve. 2008;38:1206–10.

    Article  PubMed  Google Scholar 

  34. Khelfi A, Azzouz M, Abtroun R, Reggabi M, Alamir B. Direct mechanism of action in toxic myopathies. Ann Pharm Fr. 2017;75:323–43.

    Article  CAS  PubMed  Google Scholar 

  35. Khosa S, Khanlou N, Khosa GS, Mishra SK. Hydroxychloroquine-induced autophagic vacuolar myopathy with mitochondrial abnormalities. Neuropathology. 2018;38:646–52.

    Article  CAS  PubMed  Google Scholar 

  36. Kuncl RW, Bilak MMM, Craig SW, Adams R. Exocytotic “constipation” is a mechanism of tubulin/lysosomal interaction in colchicine myopathy. Exp Cell Res. 2003;285:196–207.

    Article  CAS  PubMed  Google Scholar 

  37. Kunge RW, Duncan G, Watson D, Alderson K, Rogawski MA, Peper M. Colchicine myopathy and neuropathy. N Engl J Med. 1987;316:1562–8.

    Article  Google Scholar 

  38. Wilbur K, Makowsky M. Colchicine myotoxicity: case reports and literature review. Pharmacotherapy. 2004;24:1784–92.

    Article  PubMed  Google Scholar 

  39. D’Agostino AN, Chiga M. Cortisone myopathy in rabbits. A light and electron microscopic study. Neurology. 1966;16:257–63.

    Article  PubMed  Google Scholar 

  40. Ching JK, Ju JS, Pittman SK, Margeta M, Weihl C. Increased autophagy accelerates colchicine-induced muscle toxicity. Autophagy. 2013;9(12):2115–25.

    Article  CAS  PubMed  Google Scholar 

  41. Duane DD, Engel AG. Emetine myopathy. Neurology. 1970;20:733–9.

    Article  CAS  PubMed  Google Scholar 

  42. Halbig L, Gutmann L, Goebel HH, Brick JF, Schochet S. Ultrastructural pathology in emetine-induced myopathy. Acta Neuropathol. 1988;75:577–82.

    Article  CAS  PubMed  Google Scholar 

  43. Sugie H, Russin R, Verity MA. Emetine myopathy: two case reports with pathobiochemical analysis. Muscle Nerve. 1984;7:54–9.

    Article  CAS  PubMed  Google Scholar 

  44. Dresser LP, Massey EW, Johnson EE, Bossen E. Ipecac myopathy and cardiomyopathy. J Neurol Neurosurg Psychiatry. 1992;55:560–2.

    Google Scholar 

  45. Anderson PJ, Song SK, Slotwiner P. The fine structure of spheromembranous degeneration of skeletal muscle induced by vincristine. J Neuropathol Exp Neurol. 1967;26:15–24.

    Article  CAS  PubMed  Google Scholar 

  46. Clarke JTR, Karpati G, Carpenter S, Wolfe L. The effect of vincristine on skeletal muscle in the rat. J Neuropathol Exp Neurol. 1972;31:247–65.

    Article  CAS  PubMed  Google Scholar 

  47. Rudman D, Sewell CW, Ansley JD. Deficiency of carnitine in cachectic cirrhotic patients. J Clin Invest. 1977;70:716–23.

    Article  Google Scholar 

  48. Bargen-Lockner C, Hahn P, Wittmann B. Plasma carnitine in pregnancy. Am J Obstet Gynecol. 1981;140:412–4.

    Article  CAS  PubMed  Google Scholar 

  49. Tanphaichitr V, Lerdvuthisopon N. Urinary carnitine excretion in surgical patients on total parenteral nutrition. J Parenter Enter Nutr. 1981;5(6):505–9.

    Article  CAS  Google Scholar 

  50. Mikhail MM, Monsour MM. The relationship between serum carnitine levels and nutritional status of patients with schistosomiasis. Clin Chim Acta. 1976;71:207–14.

    Article  CAS  PubMed  Google Scholar 

  51. Hoppel CL. Carnitine metabolism in normal weight and obese human subjects during fasting. Am J Phys. 1980;238:E409–15.

    CAS  Google Scholar 

  52. Genuth SM. Plasma and urine carnitine in diabetic ketosis. Diabetes. 1979;28:1083–7.

    Article  CAS  PubMed  Google Scholar 

  53. Genuth SM. Acute hormonal effects on carnitine metabolism in thin and obese subjects: responses to somatostatin, glucagon and insulin. Metabolism. 1981;30:393–401.

    Article  CAS  PubMed  Google Scholar 

  54. McGarry JD, Robles-Valdes C, Foster D. Role of carnitine in hepatic ketogenesis. Proc Natl Acad Sci U S A. 1975;72:4385–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bilbrey GL. Hyperglucagonemia of renal failure. J Clin Invest. 1974;53:841–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sherwin RS. Influence of uremia and hemodialysis on the turnover and metabolic effects of glucagon. J Clin Invest. 1976;57:722–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kokot F. Influence of extracorporeal dialysis on glucose utilization and insulin secretion in patients with acute renal failure. Eur J Clin Invest. 1973;3:105–11.

    Article  CAS  PubMed  Google Scholar 

  58. Ferrannini E. Insulin kinetics and glucose-induced insulin delivery in chronically dialyzed subjects: acute effects of dialysis. J Clin Endocrinol Metab. 1979;49:15–22.

    Article  CAS  PubMed  Google Scholar 

  59. Engel AG, Angelini C. Carnitine deficiency of human skeletal muscle with associated lipid storage myopathy: a new syndrome. Science. 1973;179:899–902.

    Article  CAS  PubMed  Google Scholar 

  60. Chutkow JG. Lability of skeletal muscle magnesium in vivo. A study in red and white muscle. Mayo Clin Proc. 1974;49:448.

    CAS  PubMed  Google Scholar 

  61. Robeson BL, Martin WG, Friedman MH. A biochemical and ultrastructural study of skeletal muscle from rats fed a magnesium deficient diet. J Nutr. 1980;110:2078.

    Article  CAS  PubMed  Google Scholar 

  62. Alehagen U, Aaseth J. Selenium and coenzyme Q10 interrelationship is cardiovascular diseases. J Trace Elem Med Biol. 2015;31:157–62.

    Article  CAS  PubMed  Google Scholar 

  63. Angelini C, Di Mauro S, Margreth A. Relationship of serum enzyme changes to muscle damage in vitamin E deficiency of the rabbit. Sperimentale. 1968;118:349–69.

    CAS  PubMed  Google Scholar 

  64. Thomasi LG. Reversibility of human myopathy caused by vitamin E deficiency. Neurology. 1979;29:1182.

    Article  Google Scholar 

  65. Guggenheim MA, Ringel SP, Silvennan A, Grabert BE. Progressive neuromuscular disease in children with chronic cholestasis and vitamin E deficiency: diagnosis and treatment with alpha-tocopherol. J Pediatr. 1982;100:51–8.

    Article  CAS  PubMed  Google Scholar 

  66. Stumpf DA, Sokol R, Bettis D, Neville H, Ringel S, Angelini C, Bell R. Friedreich’s disease. Variant form with vitamin E deficiency and normal fat absorption. Neurology. 1987;37:68–74.

    Article  CAS  PubMed  Google Scholar 

  67. Gulec S, Collins JF. Molecular mediators governing iron-copper interactions. Ann Rev Nutr. 2014;34:95–116.

    Article  CAS  Google Scholar 

  68. Spinazzi M, Sghirlanzoni A, Salviati L, Angelini C. Impaired copper and iron metabolism in blood cells and muscles of patients affected by copper deficiency myeloneuropathy. Neuropathol Appl Neurobiol. 2014;40:888–98.

    Article  CAS  PubMed  Google Scholar 

  69. Chhetri SK, Mills RJ, Shaunak S, Emsley HCA. Cooper deficiency. Br Med J. 2014;348:g3691. (1–4)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corrado Angelini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Angelini, C. (2022). Endocrinological Myopathies. In: Angelini, C. (eds) Acquired Neuromuscular Disorders. Springer, Cham. https://doi.org/10.1007/978-3-031-06731-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06731-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06730-3

  • Online ISBN: 978-3-031-06731-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics