Skip to main content

Dynamic Light Scattering (DLS) Spectroscopy

  • Chapter
  • First Online:
Dynamic Light Scattering Spectroscopy of the Human Eye

Abstract

Dynamic Light Scattering (DLS) Spectroscopy, also known as Photon Correlation Spectroscopy (PCS), Quasielastic Light Scattering (QLS) Spectroscopy, or Laser Light Scattering (LLS) Spectroscopy measures the thermal random movement (Brownian Motion) of particles by analyzing the temporal fluctuations in scattered light intensity. The random motion of proteins causes local concentration changes which affects the intensity of scattered light. The scattered light intensity I(t) is compared to the scattered light intensity at a later time, τ, measured as a time correlation Ι(t + τ) :  < Ι(t)Ι(t + τ)> where <> is averaging over beginning time t. Scattered waves interference in the far field region generates a net scattered light intensity I(t), which displays stochastic fluctuations depending on whether the interference is constructive or destructive due to the random motion undergone by suspended particles. DLS assumes that each detected photon has been scattered once (Fig. 3.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  1. Berne BJ, Pecora R. Dynamic light scattering. Garden City, NY: Courier Dover Publications; 2000. ISBN 0-486-41155-9

    Google Scholar 

  2. Chu B. Laser light scattering. Annu Rev Phys Chem. 1970;21(1):145–74. Bibcode:1970ARPC...21..145C. https://doi.org/10.1146/annurev.pc.21.100170.001045.

    Article  CAS  Google Scholar 

  3. Pecora R. Doppler shifts in light scattering from pure liquids and polymer solutions. J Chem Phys. 1964;40(6):1604. Bibcode:1964JChPh..40.1604P. https://doi.org/10.1063/1.1725368.

    Article  CAS  Google Scholar 

  4. Goodman J. Some fundamental properties of speckle. J Opt Soc Am. 1976;66(11):1145–50. Bibcode:1976JOSA...66.1145G. https://doi.org/10.1364/josa.66.001145.

    Article  Google Scholar 

  5. Schaetzel K. Suppression of multiple-scattering by photon cross-correlation techniques. J Mod Opt. 1991;38:1849. Bibcode:1990JPCM....2..393S. https://doi.org/10.1088/0953-8984/2/S/062.

    Article  Google Scholar 

  6. Urban C, Schurtenberger P. Characterization of turbid colloidal suspensions using light scattering techniques combined with cross-correlation methods. J Colloid Interface Sci. 1998;207(1):150–8. Bibcode:1998JCIS..207..150U. https://doi.org/10.1006/jcis.1998.5769.

    Article  CAS  PubMed  Google Scholar 

  7. Block I, Scheffold F. Modulated 3D cross-correlation light scattering: improving turbid sample characterization. Rev Sci Instrum. 2010;81(12):123107. arXiv:1008.0615. Bibcode:2010RScI...81l3107B. https://doi.org/10.1063/1.3518961.

    Article  CAS  PubMed  Google Scholar 

  8. Pusey PN. Suppression of multiple scattering by photon cross-correlation techniques. Curr Opin Colloid Interface Sci. 1999;4(3):177–85. https://doi.org/10.1016/S1359-0294(99)00036-9.

    Article  CAS  Google Scholar 

  9. Gohy J-F, Varshney SK, Jérôme R. Water-soluble complexes formed by poly(2-vinylpyridinium)-block-poly(ethylene oxide) and poly(sodium methacrylate)-block-poly(ethylene oxide) copolymers. Macromolecules. 2001;34(10):3361. Bibcode:2001MaMol..34.3361G. https://doi.org/10.1021/ma0020483.

    Article  CAS  Google Scholar 

  10. Koppel DE. Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants. J Chem Phys. 1972;57(11):4814–20. Bibcode:1972JChPh..57.4814K. https://doi.org/10.1063/1.1678153.

    Article  CAS  Google Scholar 

  11. Frisken BJ. Revisiting the method of cumulants for the analysis of dynamic light-scattering data. Appl Opt. 2001;40(24):4087–91. Bibcode:2001ApOpt..40.4087F. https://doi.org/10.1364/AO.40.004087.

    Article  CAS  PubMed  Google Scholar 

  12. Hassan PA, Kulshreshtha SK. Modification to the cumulant analysis of polydispersity in quasielastic light scattering data. J Colloid Interface Sci. 2006;300(2):744–8. Bibcode:2006JCIS..300..744H. ISSN 0021-9797. https://doi.org/10.1016/j.jcis.2006.04.013.

    Article  CAS  PubMed  Google Scholar 

  13. Chu B. Laser light scattering: basic principles and practice. Academic, Boston, MA; 1992. ISBN 978-0-12-174551-6

    Google Scholar 

  14. Provencher S. CONTIN: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun. 1982;27(3):229–42. Bibcode:1982CoPhC..27..229P. https://doi.org/10.1016/0010-4655(82)90174-6.

    Article  Google Scholar 

  15. Provencher SW. A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput Phys Commun. 1982;27(3):213–27. Bibcode:1982CoPhC..27..213P. https://doi.org/10.1016/0010-4655(82)90173-4.

    Article  Google Scholar 

  16. Aragón SR, Pecora R. Theory of dynamic light scattering from polydisperse systems. J Chem Phys. 1976;64(6):2395. Bibcode:1976JChPh..64.2395A. https://doi.org/10.1063/1.432528.

    Article  Google Scholar 

  17. Rodríguez-Fernández J, Pérez-Juste J, Liz-Marzán LM, Lang PR. Dynamic light scattering of short Au rods with low aspect ratios. J Phys Chem. 2007;111(13):5020–5. https://doi.org/10.1021/jp067049x.

    Article  CAS  Google Scholar 

  18. Velu SKP, Yan M, Tseng K-P, Wong K-T, Bassani DM, Terech P. Spontaneous formation of artificial vesicles in organic media through hydrogen-bonding interactions. Macromolecules. 2013;46(4):1591–8. Bibcode:2013MaMol..46.1591V. https://doi.org/10.1021/ma302595g.

    Article  CAS  Google Scholar 

  19. Jena SS, Joshi HM, Sabareesh KPV, Tata BVR, Rao TS. Dynamics of Deinococcus radiodurans under controlled growth conditions. Biophys J. 2006;91(7):2699–707. Bibcode:2006BpJ....91.2699J. https://doi.org/10.1529/biophysj.106.086520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sabareesh KPV, Jena SS, Tata BVR. Dynamic light scattering studies on photo polymerized and chemically cross-linked polyacrylamide hydrogels. AIP Conf Proc. 2006;832(1):307–10. Bibcode:2006AIPC..832..307S. ISSN 0094-243X. https://doi.org/10.1063/1.2204513.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weiss, J.N. (2022). Dynamic Light Scattering (DLS) Spectroscopy. In: Dynamic Light Scattering Spectroscopy of the Human Eye. Springer, Cham. https://doi.org/10.1007/978-3-031-06624-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06624-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06623-8

  • Online ISBN: 978-3-031-06624-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics