Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., Mohri, M.: OpenFst: a general and efficient weighted finite-state transducer library. In: Holub, J., Žd’árek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 11–23. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76336-9_3
CrossRef
MATH
Google Scholar
Aradillas, J.C., Murillo-Fuentes, J.J., Olmos, P.M.: Boosting offline handwritten text recognition in historical documents with few labeled lines. arXiv:2012.02544 (2020)
Bluche, T.: Joint line segmentation and transcription for end-to-end handwritten paragraph recognition. arXiv:1604.08352 (2016)
Bluche, T., Louradour, J., Messina, R.: Scan, attend and read: end-to-end handwritten paragraph recognition with MDLSTM attention. arXiv:1604.03286 (2016)
Chowdhury, S., Garain, U., Chattopadhyay, T.: A weighted finite-state transducer (WFST)-based language model for online Indic script handwriting recognition. In: International Conference on Document Analysis and Recognition, pp. 599–602 (2011)
Google Scholar
Coquenet, D., Chatelain, C., Paquet, T.: Handwritten text recognition: from isolated text lines to whole documents. In: ORASIS 2021 (2021)
Google Scholar
Coquenet, D., Chatelain, C., Paquet, T.: End-to-end handwritten paragraph text recognition using a vertical attention network. arXiv:2012.03868 (2020)
Coquenet, D., Chatelain, C., Paquet, T.: Recurrence-free unconstrained handwritten text recognition using gated fully convolutional network. In: International Conference on Frontiers in Handwriting Recognition, pp. 19–24 (2020)
Google Scholar
Coquenet, D., Soullard, Y., Chatelain, C., Paquet, T.: Have convolutions already made recurrence obsolete for unconstrained handwritten text recognition? In: ICDAR Machine Learning Workshop, Sydney, Australia, pp. 65–70. IEEE (2019)
Google Scholar
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)
Google Scholar
Gay, V.: TRF-GIS Communes (1870–1940) Type: dataset
Google Scholar
Grüning, T., Leifert, G., Strauß, T., Michael, J., Labahn, R.: A two-stage method for text line detection in historical documents. Int. J. Doc. Anal. Recogn. 22(3), 285–302 (2019)
CrossRef
Google Scholar
Michael, J., Labahn, R., Grüning, T., Zöllner, J.: Evaluating sequence-to-sequence models for handwritten text recognition. arXiv:1903.07377 (2019)
Mohri, M., Pereira, F., Riley, M.: Weighted finite-state transducers in speech recognition. Comput. Speech Lang. 16(1), 69–88 (2002)
CrossRef
Google Scholar
Oliveira, S.A., Seguin, B., Kaplan, F.: dhSegment: a generic deep-learning approach for document segmentation. In: International Conference on Frontiers in Handwriting Recognition, pp. 7–12 (2018)
Google Scholar
Povey, D., et al.: The Kaldi speech recognition toolkit. In: IEEE 2011 Workshop on Automatic Speech Recognition and Understanding. IEEE Signal Processing Society (2011)
Google Scholar
Puigcerver, J.: Are multidimensional recurrent layers really necessary for handwritten text recognition? In: International Conference on Document Analysis and Recognition (ICDAR), vol. 01, pp. 67–72 (2017)
Google Scholar
Roark, B., Sproat, R., Allauzen, C., Riley, M., Sorensen, J., Tai, T.: The OpenGrm open-source finite-state grammar software libraries. In: Proceedings of the ACL 2012 System Demonstrations, Jeju Island, Korea, pp. 61–66. Association for Computational Linguistics, July 2012
Google Scholar
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. arXiv:1505.04597 (2015)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. arXiv:1801.04381 (2019)
Schall, M., Schambach, M.P., Franz, M.O.: Multi-dimensional connectionist classification: reading text in one step. In: International Workshop on Document Analysis Systems (DAS), pp. 405–410 (2018)
Google Scholar
Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019)
CrossRef
Google Scholar
Stuner, B., Chatelain, C., Paquet, T.: Self-training of BLSTM with lexicon verification for handwriting recognition. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 01, pp. 633–638 (2017)
Google Scholar
Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. arXiv:1905.11946 (2020)
Tensmeyer, C., Davis, B., Wigington, C., Lee, I., Barrett, B.: PageNet: page boundary extraction in historical handwritten documents. arXiv:1709.01618 (2017)
Thomas, P.: Semi-supervised learning by Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien (review). IEEE Trans. Neural Netw. 20, 542 (2009)
Google Scholar
Voigtlaender, P., Doetsch, P., Ney, H.: Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. In: International Conference on Frontiers in Handwriting Recognition, pp. 228–233 (2016)
Google Scholar
Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves imagenet classification. arXiv:1911.04252 (2020)
Yalniz, I.Z., Jégou, H., Chen, K., Paluri, M., Mahajan, D.: Billion-scale semi-supervised learning for image classification. arXiv:1905.00546 (2019)
Yousef, M., Bishop, T.E.: OrigamiNet: weakly-supervised, segmentation-free, one-step, full page text recognition by learning to unfold. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14698–14707. IEEE (2020)
Google Scholar
Yousef, M., Hussain, K.F., Mohammed, U.S.: Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recogn. 108, 107482 (2020)
Google Scholar
Zou, Y., Yu, Z., Liu, X., Kumar, B.V.K.V., Wang, J.: Confidence regularized self-training. arXiv:1908.09822 (2020)