Skip to main content

A Computational Drug Repositioning Method for Rare Diseases

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13259)


Rare diseases are a group of unusual pathologies in the world population, hence their name. They are considered the great neglected field of pharmaceutical research. To date, over 6,000 rare diseases have been identified and most of them lack treatment. The fact that they are so rare in the population does not encourage research efforts since their treatments are not in high demand. This work aims to analyze potential drug repositioning strategies that could be applied to these types of diseases. That is, discovering if existing drugs currently used for treating certain diseases can be employed to treat rare diseases. This process has been carried out using computational methods that compute similarities between rare diseases and other diseases, considering biological characteristics such as genes, proteins, and symptoms. The obtained potential drug repositioning hypotheses have been contrasted with related clinical trials found in scientific literature published to date.


  • Rare diseases
  • Orphan diseases
  • Drug repositioning
  • Computational biology

Universidad Politécnica de Madrid.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. 1.

  2. 2.

  3. 3.

  4. 4.

  5. 5.


  1. Delavan, B., Roberts, R., Huang, R., Bao, W., Tong, W., Liu, Z.: Computational drug repositioning for rare diseases in the era of precision medicine. Drug Discov. Today 23(2), 382–394 (2018).

    CrossRef  Google Scholar 

  2. Stolk, P.: Rare essentials drugs for rare diseases as essential medicines. Bull. World Health Organ. 84(9), 745–751 (2006).

    CrossRef  Google Scholar 

  3. Nguengang Wakap, S.: Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur. J. Hum. Genet. 28(2), 165–173 (2020).

    CrossRef  Google Scholar 

  4. The Lancet Diabetes & Endocrinology: Spotlight on rare diseases. Lancet Diab. Endocrinol. 7(2), 75 (2019).

  5. Sardana, D., Zhu, C., Zhang, M., Gudivada, R.C., Yang, L., Jegga, A.G.: Drug repositioning for orphan diseases. Brief. Bioinform. 12(4), 346–356 (2011).

    CrossRef  Google Scholar 

  6. Scannell, J.W., Blanckley, A., Boldon, H., Warrington, B.: Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 11(3), 191–200 (2012).

    CrossRef  Google Scholar 

  7. Roessler, H.I., Knoers, N.V.A.M., van Haelst, M.M., van Haaften, G.: Drug Repurposing for Rare Diseases. Trends Pharmacol. Sci. 42(4), 255–267 (2021).

    CrossRef  Google Scholar 

  8. Lotfi Shahreza, M., Ghadiri, N., Green, J.R.: A computational drug repositioning method applied to rare diseases: adrenocortical carcinoma. Sci. Rep. 10(1), 8846 (2020).

    CrossRef  Google Scholar 

  9. Gottlieb, A., Stein, G.Y., Ruppin, E., Sharan, R.: PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol. 7(1), 496 (2011).

    CrossRef  Google Scholar 

  10. Napolitano, F., Zhao, Y., Moreira, V.M., Tagliaferri, R., Kere, J., D’Amato, M., Greco, D.: Drug repositioning: a machine-learning approach through data integration. J. Cheminformatics 5(1), 30 (2013).

    CrossRef  Google Scholar 

  11. Menden, M.P., Iorio, F., Garnett, M., McDermott, U., Benes, C.H., Ballester, P.J., Saez-Rodriguez, J.: Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS ONE 8(4), e61318 (2013).

    CrossRef  Google Scholar 

  12. Aliper, A., Plis, S., Artemov, A., Ulloa, A., Mamoshina, P., Zhavoronkov, A.: Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol. Pharm. 13(7), 2524–2530 (2016).

    CrossRef  Google Scholar 

  13. Prieto Santamaría, L., Ugarte Carro, E., Díaz Uzquiano, M., Menasalvas Ruiz, E., Pérez Gallardo, Y., Rodríguez-González, A.: A data-driven methodology towards evaluating the potential of drug repurposing hypotheses. Comput. Struct. Biotechnol. J. 19, 4559–4573 (2021).

    CrossRef  Google Scholar 

  14. Prieto Santamaría, L., Díaz Uzquiano, M., Ugarte Carro, E., Ortiz-Roldán, N., Pérez Gallardo, Y., Rodríguez-González, A.: Integrating heterogeneous data to facilitate COVID-19 drug repurposing. Drug Discov. Today 27(2), 558–566 (2022).

    CrossRef  Google Scholar 

  15. Decherchi, S., Pedrini, E., Mordenti, M., Cavalli, A., Sangiorgi, L.: Opportunities and challenges for machine learning in rare diseases. Front. Med. 8, 747612 (2021).

    CrossRef  Google Scholar 

  16. Cao, H., Zhang, L., Jin, B., Cheng, S., Wei, X., Che, C.: Enriching limited information on rare diseases from heterogeneous networks for drug repositioning. BMC Med. Inform. Decis. Mak. 21(S9), 304 (2021).

    CrossRef  Google Scholar 

  17. Lagunes-García, G., Rodríguez-González, A., Prieto-Santamaría, L., García del Valle, E.P., Zanin, M., Menasalvas-Ruiz, E.: DISNET: a framework for extracting phenotypic disease information from public sources. PeerJ 8, e8580 (2020).

    CrossRef  Google Scholar 

  18. Alto, W.A., Clarcq, L.: Cutaneous and systemic manifestations of mastocytosis. Am. Fam. Phys. 59(11), 3047–3054 (1999)

    Google Scholar 

  19. Rayinda, T., Oktarina, D.A.M., Danarti, R.: Diffuse cutaneous mastocytosis masquerading as linear IgA bullous dermatosis of childhood. Dermatol. Rep. 13(1), 9021 (2021).

    CrossRef  Google Scholar 

  20. Czarny, J., Lange, M., Ługowska-Umer, H., Nowicki, R.J.: Cutaneous mastocytosis treatment: strategies, limitations and perspectives. Adv. Dermatol. Allergol 35(6), 541–545 (2018).

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alejandro Rodríguez-González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Otero-Carrasco, B., Prieto Santamaría, L., Ugarte Carro, E., Caraça-Valente Hernández, J.P., Rodríguez-González, A. (2022). A Computational Drug Repositioning Method for Rare Diseases. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Bio-inspired Systems and Applications: from Robotics to Ambient Intelligence. IWINAC 2022. Lecture Notes in Computer Science, vol 13259. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06526-2

  • Online ISBN: 978-3-031-06527-9

  • eBook Packages: Computer ScienceComputer Science (R0)