Skip to main content

Deep Layout Extraction Applied to Historical Postcards

  • Conference paper
  • First Online:
Bio-inspired Systems and Applications: from Robotics to Ambient Intelligence (IWINAC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13259))

  • 1282 Accesses

Abstract

We describe an experimental study on the layout extraction problem applied to circulated old postcards. This type of historical documents presents many challenging aspects related with their automatic analysis as images. For example, their degradation due to passing of time or the possible overlapping of different elements in a reduced space. Postcard layout extraction consists in segmenting in regions the various contained information types present on these images. For the proposed task, we have used semantic segmentation deep neural networks which learn to classify the document image pixels into the different considered class categories in postcards (e.g., stamps, postmarks, handwritten text or illustrations, among others). Our experiments on an annotated dataset of 100 postcards produced respective global F1-score, Jaccard and pixel accuracy metrics values of 0.92, 0.85 and 0.92, which endorses the feasibility of the proposed method. Additionally, to the best of our knowledge, this paper is one of the first investigation in this problem applied to historical postcards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vecco, M.: A definition of cultural heritage: from the tangible to the intangible. J. Cult. Herit. 11(3), 321–324 (2010)

    Article  Google Scholar 

  2. Philips, J.P., Tabrizi, N.: Historical document processing: a survey of techniques, tools, and trends. In: Proceeding 12th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K), INSTICC, Online Event (2020)

    Google Scholar 

  3. Yen, S.-H., Chen, M.-F., Lin, H.-J., Wang, C.-J., Liu, C.-H.: The extraction of characters on dated color postcards. In: Proceedings IEEE International Conference on Multimedia and Expo (ICME). vol 2, pp. 1415–1418. IEEE, Taipei (2004)

    Google Scholar 

  4. Roe, E., Mello, C.A.B.: Automatic system for restoring old color postcards. In: Proceedings International Conference on Systems. Man, and Cybernetics (SMC), pp. 451–456. IEEE, Seoul (2012)

    Google Scholar 

  5. Roe, E., de Mello, C.A.B.: Restoring images of ancient color postcards. Vis. Comput. 31(5), 627–641 (2014). https://doi.org/10.1007/s00371-014-0988-4

    Article  Google Scholar 

  6. Grzeszick, R., Fink, G.A.: Recognizing scene categories of historical postcards. In: Jiang, X., Hornegger, J., Koch, R. (eds.) GCPR 2014. LNCS, vol. 8753, pp. 604–615. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11752-2_50

    Chapter  Google Scholar 

  7. Fink, G.A., Rothacker, L., Grzeszick, R.: Grouping historical postcards using query-by-example word spotting. In: Proceedings 14th Conference on Frontiers in Handwriting Recognition (ICFHW), pp. 470–475. IEEE, Crete (2014)

    Google Scholar 

  8. BinMakhashen, G.M., Mahmoud, S.A.: Document layout analysis: a comprehensive survey. ACM Comput. Surv. 52(6), 109 (2019)

    Google Scholar 

  9. BinMakhashen, G.M., Mahmoud, S.A.: Historical document layout analysis using anisotropic diffusion and geometric features. In. J. Digit. Lib. 21(3), 329–342 (2020). https://doi.org/10.1007/s00799-020-00280-w

    Article  Google Scholar 

  10. Namboodiri, A.M., Jain, A.K.: Document structure and layout analysis. In: Chaudhuri, B.B. (ed.) Digital Document Processing. Advances in Pattern Recognition. Springer, London (2007). https://doi.org/10.1007/978-1-84628-726-8_2

  11. Asi, A., Cohen, R., Kedem, K., El-Sana, J., Dinstein, I.: A coarse-to-fine approach for layout analysis of ancient manuscripts. In: Proceedings 14th Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 140–145. IEEE, Crete (2014)

    Google Scholar 

  12. Xu, Y., Yin, F., Zhang, Z., Liu, C.-L.: Multi-task layout analysis for historical handwritten documents using fully convolutional networks. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI), pp. 1057–1063. IJCAI, Stockholm (2018)

    Google Scholar 

  13. Oliveira, D.A.B., Viana, M.P.: Fast CNN-based document layout analysis. In: Proceedings IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 1173–1180. IEEE, Venice (2017)

    Google Scholar 

  14. Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Martinez-Gonzalez, P., Garcia-Rodriguez, J.: A survey on deep learning techniques for image and video semantic segmentation. Appl. Soft Comput. 70, 41–65 (2018)

    Google Scholar 

  15. Garz, A., Sablatnig, R., Diem, M.: Layout analysis for historical manuscripts using sift features. In: Proceedings 11th International Conference on Document Analysis and Recognition (ICDAR), pp. 508–512. IEEE, Beijing (2011)

    Google Scholar 

  16. Wei, H., Baechler, M., Slimane, F., Ingold, R.: Evaluation of SVM, MLP and GMM classifiers for layout analysis of historical documents. In: Proceedings 12th International Conference on Document Analysis and Recognition (ICDAR), pp. 1220–1224. IEEE, Washington DC (2013)

    Google Scholar 

  17. Corbelli, A., Baraldi, L., Grana, C., Cucchiara, R.: Historical document digitization through layout analysis and deep content classification. In: Proceedings Conference Pattern Recognition (ICPR), pp. 4077–4082. IEEE, Mexico (2016)

    Google Scholar 

  18. Trivedi, A., Sarvadevabhatla, R.K.: HInDoLA: a unified cloud-based platform for annotation, visualization and machine learning-based layout analysis of historical manuscripts. In: Proceedings of the International Conference on Document Analysis and Recognition Workshops (ICDARW). IEEE, Sydney (2019)

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  20. Ahmed, I., Ahmad, M., Khan, F.A., Asif, M.: Comparison of deep-learning-based segmentation models: using top view person images. IEEE Access 8, 136361–136373 (2020)

    Article  Google Scholar 

  21. Tsopanidis, S., Moreno, R.H., Osovski, S.: Toward quantitative fractography using convolutional neural networks. Eng. Fract. Mech. 231, 106992 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the CYTED Network “Ibero-American Thematic Network on ICT Applications for Smart Cities” (Ref: 518RT0559), and also the financial support given by the Spanish MICINN RTI Project with reference: RTI2018-098019-B-100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

García, B., Moreno, B., Vélez, J.F., Sánchez, Á. (2022). Deep Layout Extraction Applied to Historical Postcards. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Bio-inspired Systems and Applications: from Robotics to Ambient Intelligence. IWINAC 2022. Lecture Notes in Computer Science, vol 13259. Springer, Cham. https://doi.org/10.1007/978-3-031-06527-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06527-9_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06526-2

  • Online ISBN: 978-3-031-06527-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics