Abstract
Depression is a large-scale and consequential problem in youth and young adults. Conversational agents (CAs) can contribute to addressing current barriers to seeking treatment, such as long waiting lists, and reduce the high dropout rates reported for other digital health interventions. However, existing CAs have not considered differences between youth and adults and are primarily designed based on a ‘one-size-fits-all’ approach that neglects individual symptoms and preferences. Therefore, we propose a theory-driven design for personalized CAs to treat depression in youth and young adults. Based on interviews with patients (i.e., people diagnosed with depression), we derive two design principles to personalize the character of the CA and its therapeutic content. These principles are instantiated in prototypes and evaluated in interviews with experts experienced in delivering psychotherapy and potential nondiagnosed users. Personalization was perceived as crucial for treatment success, and autonomy and transparency emerged as important themes for personalization. We contribute by providing design principles for personalized CAs for mental health that extend previous CA research in the context of mental health.
Keywords
- Conversational agent
- Mental health
- Personalization
- Transdisciplinary research
This is a preview of subscription content, access via your institution.
Buying options


References
Jane Costello, E., Erkanli, A., Angold, A.: Is there an epidemic of child or adolescent depression? J. Child Psychol. Psychiatry 47, 1263–1271 (2006)
Ellsäßer, G.: Unfälle, Gewalt, Selbstverletzung bei Kindern und Jugendlichen 2017. Ergebnisse der amtlichen Statistik zum Verletzungsgeschehen 2014. Fachbericht. (2017)
Greiner, W., Batram, M., Witte, J.: Kinder- und Jugendreport 2019. Gesundheitsversorgung von Kindern und Jugendlichen in Deutschland. Schwerpunkt: Ängste und Depressionen bei Schulkindern, in Beiträge zur Gesundheitsökonomie und Versorgungsforschung. Bielefeld und Hamburg (2019)
Thapar, A., Collishaw, S., Pine, D.S., Thapar, A.K.: Depression in adolescence. Lancet 379, 1056–1067 (2012)
Oud, M., et al.: Effectiveness of CBT for children and adolescents with depression: a systematic review and meta-regression analysis. Eur. Psychiatry J. Assoc. Eur. Psychiatr. 57, 33–45 (2019)
Cuijpers, P., Noma, H., Karyotaki, E., Vinkers, C.H., Cipriani, A., Furukawa, T.A.: A network meta-analysis of the effects of psychotherapies, pharmacotherapies and their combination in the treatment of adult depression. World Psychiatry 19, 92–107 (2020)
Bundespsychotherapeutenkammer: Ein Jahr nach der Reform der Psychotherapie-Richtlinie (2018)
Gulliver, A., Griffiths, K.M., Christensen, H.: Perceived barriers and facilitators to mental health help-seeking in young people: a systematic review. BMC Psychiatry 10, 113 (2010)
Leech, T., Dorstyn, D., Taylor, A., Li, W.: Mental health apps for adolescents and young adults: a systematic review of randomised controlled trials. Child. Youth Serv. Rev. 127, 106073 (2021)
Dale, R.: The return of the chatbots. Nat. Lang. Eng. 22, 811–817 (2016)
Cuijpers, P., Reijnders, M., Huibers, M.J.H.: The role of common factors in psychotherapy outcomes. Annu. Rev. Clin. Psychol. 15, 207–231 (2019)
Ahmad, R., Siemon, D., Gnewuch, U., Robra-Bissantz, S.: Designing personality-adaptive conversational agents for mental health care. Inf. Syst. Front. (2022)
Fitzpatrick, K.K., Darcy, A., Vierhile, M.: Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): a randomized controlled trial. JMIR Ment. Health. 4, e19 (2017)
Inkster, B., Sarda, S., Subramanian, V.: An empathy-driven, conversational artificial intelligence agent (Wysa) for digital mental well-being: real-world data evaluation mixed-methods study. JMIR MHealth UHealth. 6, e12106 (2018)
Darcy, A., Daniels, J., Salinger, D., Wicks, P., Robinson, A.: Evidence of human-level bonds established with a digital conversational agent: cross-sectional retrospective observational study. JMIR Form. Res. 5, e27868 (2021)
Brandtzaeg, P., Skjuve, M., Dysthe, K., Følstad, A.: When the social becomes non-human: young people’s perception of social support in chatbots social support in chatbots. Presented at the April 3 (2021)
Lohaus, A. ed: Entwicklungspsychologie des Jugendalters. Springer-Verlag, Berlin Heidelberg (2018)
Kocaballi, A.B., et al.: The personalization of conversational agents in health care: systematic review. J. Med. Internet Res. 21, e15360 (2019)
Bichler, M.: Design science in information systems research. Wirtschaftsinformatik 48(2), 133–135 (2006). https://doi.org/10.1007/s11576-006-0028-8
Lawrence, M.G., Williams, S., Nanz, P., Renn, O.: Characteristics, potentials, and challenges of transdisciplinary research. One Earth. 5, 44–61 (2022)
Fan, H., Poole, M.S.: What is personalization? Perspectives on the design and implementation of personalization in information systems. J. Organ. Comput. Electron. Commer. 16, 179–202 (2006)
Vaidyam, A.N., Linggonegoro, D., Torous, J.: Changes to the psychiatric chatbot landscape: a systematic review of conversational agents in serious mental illness: Changements du paysage psychiatrique des chatbots: une revue systématique des agents conversationnels dans la maladie mentale sérieuse. Can. J. Psychiatry. 0706743720966429 (2020)
Blom, J.o, Monk, A.F.: Theory of personalization of appearance: why users personalize their PCs and mobile phones. human–computer interact. 18, 193–228 (2003)
Huibers, M.J.H., Lorenzo-Luaces, L., Cuijpers, P., Kazantzis, N.: On the road to personalized psychotherapy: a research agenda based on cognitive behavior therapy for depression. Front. Psychiatry. 11 (2021)
Kuechler, B., Vaishnavi, V.: On theory development in design science research: anatomy of a research project. Eur. J. Inf. Syst. 17, 489–504 (2008)
Venable, J., Pries-Heje, J., Baskerville, R.: FEDS: a framework for evaluation in design science research. Eur. J. Inf. Syst. 25, 77–89 (2016)
Diederich, S., Brendel, A., Morana, S., Kolbe, L.: On the design of and interaction with conversational agents: an organizing and assessing review of human-computer interaction research. J. Assoc. Inf. Syst. 23, 96–138 (2022)
Radomski, A.D., et al.: Design and delivery features that may improve the use of internet-based cognitive behavioral therapy for children and adolescents with anxiety: a realist literature synthesis with a persuasive systems design perspective. J. Med. Internet Res. 21, e11128 (2019)
Garrido, S., et al.: Young people’s response to six smartphone apps for anxiety and depression: focus group study. JMIR Ment. Health. 6, e14385 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Kuhlmeier, F.O., Gnewuch, U., Lüttke, S., Brakemeier, EL., Mädche, A. (2022). A Personalized Conversational Agent to Treat Depression in Youth and Young Adults – A Transdisciplinary Design Science Research Project. In: Drechsler, A., Gerber, A., Hevner, A. (eds) The Transdisciplinary Reach of Design Science Research. DESRIST 2022. Lecture Notes in Computer Science, vol 13229. Springer, Cham. https://doi.org/10.1007/978-3-031-06516-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-06516-3_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06515-6
Online ISBN: 978-3-031-06516-3
eBook Packages: Computer ScienceComputer Science (R0)