Skip to main content

Assessment of Environmental Impacts of Pesticides: Evidence from Meta-Analysis

  • Chapter
  • First Online:
Towards Sustainable Natural Resources

Abstract

The previous studies have found inter-linkages between pesticide use and their environmental impacts. However, these studies did not make attempts to relate the pesticide impact on target and non-target organisms. In order to fill the void, the literature we currently have on the relationship between pesticide use and environmental consequences was extensively reviewed, and executed with the promise to fill the knowledge-gap. Additionally, this chapter also finds alternative ways such as IPM (Integrated Pest Management) to reduce the spill-over effects of pesticides. The fundamental objective of the study is to explain the potential association between pesticides and environmental effects especially on target and non-target organisms. For this purpose, the meta-analysis of case–control and cohort research was experimented by the authors. In the meta-analysis, two cohort studies and 46 case–control studies were chosen. The investigators computed a pooled meta-analysis stratified on various ecosystem relationships of the environment after testing study homogeneity using the Cochran Q test. The authors then created a list of variables considered to be significant in understanding the relationship between pesticide use and environmental hazard on target and non-target organisms and conducted a series of meta-analyses on it. The result of the meta-analysis of the cohort studies shows positive connections between pesticide use and environmental hazard. The findings confirmed that both target and non-target organisms in the environment are affected by the immense use of pesticides with each passing year, and correspondingly, the impact will increase in the future. The study also reveals that many human diseases grow by the use of pesticides in the farmlands. The meta-analysis also shows that the various components of the environment like soil, water and air are extensively overblown by the frequent use of pesticides. The study concluded that although the pesticides increase the production up to a threshold level but simultaneously the overall analysis reveals that their use has negative network externalities on the environment with far reaching consequences on the sustainable development on one hand and human lives on the other hand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Mallek AY, Moharram AM, Abdel-Kader MIA, Omar SA (1994) Effect of soil treatment with the organophosphorus insecticide Profenfos on the fungal flora and some microbial activities. Microbiol Res 149(2):167–171

    Article  CAS  Google Scholar 

  • Abdullah NZ, Ishaka A, Samsuddin N, Mohd Rus R, Mohamed AH (2011) Chronic organophosphate pesticide exposure and coronary artery disease: finding a bridge. IIUM Research, Invention and Innovation Exhibition (IRIIE), p 223

    Google Scholar 

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdisc Toxicol 2(1):1

    Google Scholar 

  • Amalin DM, Pena JE, Duncan R, Leavengood J, Koptur S (2009) Effects of pesticides on the arthropod community in the agricultural areas near the Everglades National Park. In: Proceedings of the Florida State horticultural society, vol 122, pp 429–437

    Google Scholar 

  • Andersen HR, Wohlfahrt-Veje C, Dalgård C et al (2012) Paraoxonase 1 polymorphism and prenatal pesticide exposure associated with adverse cardiovascular risk profiles at school age. PLoS ONE 7(5):e36830

    Article  CAS  Google Scholar 

  • Aveling C (1977) The biology of Anthocorids (Heterophera: Anthocoridae) and their role in the integrated control of the damson-hop aphid (PhorodonhumiliSchrank). University of London, PhD Thesis

    Google Scholar 

  • Band PR, Abanto Z, Bert J, Lang B, Fang R, Gallagher RP, Le ND (2011) Prostate cancer risk and exposure to pesticides in British Columbia farmers. Prostate 71(2):168–183

    Article  Google Scholar 

  • Bartlett B, Ewart WH (1951) Effect of parathion on parasites of Coccus hesperidum. J Econ Entomol 44(3):344–347

    Article  CAS  Google Scholar 

  • Bentounsi HE, Boukhalfa O, Bensalma O (2020) Criblage de l’activité insecticide de quelquessouches de mycètes et d’actinomycetescontre un insecteravageur de plantes

    Google Scholar 

  • Blacquiere T, Smagghe G, Van Gestel CA, Mommaerts V (2012) Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21(4):973–992

    Article  CAS  Google Scholar 

  • BLI (2004). State of the world’s birds. Birdlife International. http://www.biodiversityinfo.org/default.php

  • Bottrell DG, Rummel DR (1978) Response of Heliothis populations to insecticides applied in an area-wide reproduction diapause boll weevil suppression program. J Econ Entomol 71(1):87–92

    Article  CAS  Google Scholar 

  • Brühl CA, Schmidt T, Pieper S, Alscher A (2013) Terrestrial pesticide exposure of amphibians: an underestimated cause of global decline? Sci Rep 3(1):1–4

    Article  CAS  Google Scholar 

  • Carriger JF, Rand GM, Gardinali PR, Perry WB, Tompkins MS, Fernandez AM (2006) Pesticides of potential ecological concern in sediment from South Florida canals: an ecological risk prioritization for aquatic arthropods. Soil Sediment Contamination 15(1):21–45

    Article  CAS  Google Scholar 

  • Carter AD, Heather AIJ (1995) Pesticides in groundwater. In: Best GA, Ruthven AD (eds) Pesticides—developments, impacts, and controls. The Royals Society of Chemistry, London, pp 113–123

    Google Scholar 

  • Chahil GS, Kular JS (2013) Biology of Pieris brassicae (Linn.) on different Brassica species in the plains of Punjab. J Plant Protection Res 53(1)

    Google Scholar 

  • Chakraborty S, Mukherjee S, Roychoudhury S, Siddique S, Lahiri T, Ray MR (2009) Chronic exposures to cholinesterase-inhibiting pesticides adversely affect respiratory health of agricultural workers in India. J Occup Health 51(6):488–497

    Article  CAS  Google Scholar 

  • Chalam AV, Sasikala C, Ramana CV, Rao PR (1996) Effect of pesticides on hydrogen metabolism of Rhodobactersphaeroides and Rhodopseudomonaspalustris. FEMS Microbiol Ecol 19(1):1–4

    Article  CAS  Google Scholar 

  • Cocco P, Satta G, Dubois S, Pili C, Pilleri M, Zucca M, Boffetta P (2013) Lymphoma risk and occupational exposure to pesticides: results of the Epilymph study. Occup Environ Med 70(2):91–98

    Article  Google Scholar 

  • Cothran RD, Brown JM, Relyea RA (2013) Proximity to agriculture is correlated with pesticide tolerance: evidence for the evolution of amphibian resistance to modern pesticides. Evol Appl 6(5):832–841

    Article  CAS  Google Scholar 

  • Davies TGE, Field LM, Williamson MS (2012) The re-emergence of the bed bug as a nuisance pest: implications of resistance to the pyrethroid insecticides. Med Vet Entomol 26(3):241–254

    Article  CAS  Google Scholar 

  • Denholm I, Birnie LC, Kennedy PJ, Shaw KE, Perry JN, Powell W (1998) The complementary roles of laboratory and field testing in ecotoxicological risk assessment. In: Brighton crop protection conference pests and diseases, vol 2. Brit crop protection council, pp 583–590

    Google Scholar 

  • Deribe E, Rosseland BO, Borgstrøm R, Salbu B, Gebremariam Z, Dadebo E, Eklo OM (2013) Biomagnification of DDT and its metabolites in four fish species of a tropical lake. Ecotoxicol Environ Saf 95:10–18

    Article  CAS  Google Scholar 

  • Dhaliwal GS, Singh R, Chhillar BS (2016) Essentials of agricultural entomology. Kalyani Publishers

    Google Scholar 

  • Edwards CA (1987) The environmental impact of insecticides. In: Delucchi V (ed) Integrated pest management. International Perspective Parasitis, Geneva, Switzerland, pp 309–329

    Google Scholar 

  • Elbaz A, Clavel J, Rathouz PJ, Moisan F, Galanaud JP, Delemotte B, Tzourio C (2009) Professional exposure to pesticides and Parkinson disease. Ann Neurol 66(4):494–504

    Article  Google Scholar 

  • Evans SC, Shaw EM, Rypstra AL (2010) Exposure to a glyphosate-based herbicide affects agrobiont predatory arthropod behaviour and long-term survival. Ecotoxicology 19(7):1249–1257

    Article  CAS  Google Scholar 

  • Fabellar LT, Heinrichs EA (1986) Relative toxicity of insecticides to rice planthoppers and leafhoppers and their predators. Crop Prot 5(4):254–258

    Article  CAS  Google Scholar 

  • Fishel FM (2011) Pesticides effects on nontarget organisms. PI-85. Pesticide information office, Florida Cooperative Extension Service, IFAS, University of Florida, Gainesville, FL, USA. http://edis.ifas.ufl.edu/pi122

  • Fountain MT, Brown VK, Gange AC, Symondson WO, Murray PJ (2007) The effects of the insecticide chlorpyrifos on spider and Collembola communities. Pedobiologia 51(2):147–158

    Article  CAS  Google Scholar 

  • Gentz MC, Murdoch G, King GF (2010) Tandem use of selective insecticides and natural enemies for effective, reduced-risk pest management. Biol Control 52(3):208–215

    Google Scholar 

  • Georghiou GP, Taylor CE (1977) Genetic and biological influences in the evolution of insecticide resistance. J Econ Entomol 70(3):319–323

    Article  CAS  Google Scholar 

  • Ghananand T, Prasad CS, Lok N (2011) Effect of insecticides, bio-pesticides and botanicals on the population of natural enemies in Brinjal ecosystem. Vegetos 24(2):40–44

    Google Scholar 

  • Giglio A, Giulianini PG, Zetto T, Talarico F (2011) Effects of the pesticide dimethoate on a non-target generalist carabid, Pterostichus melas italicus (Dejean, 1828)(Coleoptera: Carabidae). Italian J Zoo 78(4):471–477

    Article  Google Scholar 

  • Gill HK, Garg H (2014) Pesticide: environmental impacts and management strategies. Pesticides-Toxic Aspects 8:187

    Google Scholar 

  • Gondhalekar AD, Scherer CW, Saran RK, Scharf ME (2013) Implementation of an indoxacarb susceptibility monitoring program using field-collected German cockroach isolates from the United States. J Econ Entomol 106(2):945–953

    Article  CAS  Google Scholar 

  • Greenlee AR, Arbuckle TE, Chyou PH (2003) Risk factors for female infertility in an agricultural region. Epidemiology, 429–436

    Google Scholar 

  • Hassaan MA, El Nemr A (2020) Pesticides pollution: classifications, human health impact, extraction and treatment techniques. Egypt J Aquat Res 46(3):207–220

    Google Scholar 

  • Hayden KM, Norton MC, Darcey D, Østbye T, Zandi PP, Breitner JCS, Welsh-Bohmer KA (2010) Occupational exposure to pesticides increases the risk of incident AD: the Cache County study. Neurology 74(19):1524–1530

    Article  CAS  Google Scholar 

  • Heck JE, Charbotel B, Moore LE, Karami S, Zaridze DG, Matveev V, Janout V, Kollarova H, Foretova L, Bencko V, Szeszenia-Dabrowska N, Lissowska J, Mates D, Ferro G, Chow W-H, Rothman N, Stewart P, Brennan P, Boffetta P (2010) Occupation and renal 218 Pesticides—toxic aspects cell cancer in central and eastern Europe. Occup Environ Med 67:47–53

    Article  CAS  Google Scholar 

  • Hoppin JA, Umbach DM, London SJ, Henneberger PK, Kullman GJ, Coble J, Sandler DP (2009) Pesticide use and adult-onset asthma among male farmers in the Agricultural Health Study. Eur Respir J 34(6):1296–1303

    Article  CAS  Google Scholar 

  • Hussain S, Siddique T, Saleem M, Arshad M, Khalid A (2009) Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Adv Agron 102:159–200

    Article  CAS  Google Scholar 

  • Ingram CW, Coyne MS, Williams DW (2005) Effects of commercial diazinon and imidacloprid on microbial urease activity in soil and sod. J Environ Qual 34(5):1573–1580

    Article  CAS  Google Scholar 

  • Kelly DW, Poulin R, Tompkins DM, Townsend CR (2010) Synergistic effects of glyphosate formulation and parasite infection on fish malformations and survival. J Appl Ecol 47(2):498–504

    Article  CAS  Google Scholar 

  • Kumar R, Kranthi S, Nitharwal M, Jat SL, Monga D (2012) Influence of pesticides and application methods on pest and predatory arthropods associated with cotton. Phytoparasitica 40(5):417–424

    Article  CAS  Google Scholar 

  • Kumari M (2012) Effects of organophosphate pesticide abate on the ovary of the cat fish, Heteropneustesfossilis (Bloch.). Bangladesh J Zoo 40(2):207–212

    Google Scholar 

  • Laabs V, Wehrhan A, Pinto A, Dores EFGC, Amelung W (2007) Pesticide fate in tropical wetlands of Brazil: an aquatic microcosm study under semi-field conditions. Chemosphere 67(5):975–989

    Article  CAS  Google Scholar 

  • Laycock I, Lenthall KM, Barratt AT, Cresswell JE (2012) Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumble bees (Bombus terrestris). Ecotoxicology 21(7):1937–1945

    Article  CAS  Google Scholar 

  • Lee DH, Lind PM, Jacobs DR, Salihovic S, Van Bavel B, Lind L (2011) Polychlorinated biphenyls and organochlorine pesticides in plasma predict development of type 2 diabetes in the elderly: the prospective investigation of the vasculature in Uppsala Seniors (PIVUS) study. Diabetes Care 34(8):1778–1784

    Article  Google Scholar 

  • Madhuri RJ, Rangaswamy V (2002) Influence of selected insecticides on phosphatase activity in groundnut (Arachis hypogeae L.) soils. J Environ Biol 23(4):393–397

    Google Scholar 

  • Martınez-Toledo MV, Salmeron V, Rodelas B, Pozo C, Gonzalez-Lopez J (1998) Effects of the fungicide Captan on some functional groups of soil microflora. Appl Soil Ecol 7(3):245–255

    Article  Google Scholar 

  • McClure MS (1977) Resurgence of the scale, Fiorinia externa (Homoptera: Diaspididae), on hemlock following insecticide application. Environ Entomol 6(3):480–484

    Article  CAS  Google Scholar 

  • Meyers LA, Bull JJ (2002) Fighting change with change: adaptive variation in an uncertain world. Trends Ecol Evol 17(12):551–557

    Article  Google Scholar 

  • Mironidis GK, Kapantaidaki D, Bentila M, Morou E, Savopoulou-Soultani M, Vontas J (2013) Resurgence of the cotton bollworm Helicoverpaarmigera in northern Greece associated with insecticide resistance. Insect Sci 20(4):505–512

    Article  CAS  Google Scholar 

  • Mitra A, Chatterjee C, Mandal FB (2011) Synthetic chemical pesticides and their effects on birds. Res J Environ Toxicol 5(2):81–96

    Article  CAS  Google Scholar 

  • Mostafalou S, Abdollahi M (2012) Concerns of environmental persistence of pesticides and human chronic diseases. Clin Exper Pharmacol. https://doi.org/10.4172/2161-1459.S5-e002)

  • Muñoz-Leoz B, Ruiz-Romera E, Antigüedad I, Garbisu C (2011) Tebuconazole application decreases soil microbial biomass and activity. Soil Biol Biochem 43(10):2176–2183

    Article  CAS  Google Scholar 

  • Muñoz-Leoz B, Ruiz-Romera E, Antigüedad I, Garbisu C (2011) Tebuconazole application decreases soil microbial biomass and activity. Soil Biol Biochem 43(10):2176–2183

    Article  CAS  Google Scholar 

  • Nalwanga E, Ssempebwa JC (2011) Knowledge and practices of in-home pesticide use: a community survey in Uganda. J Environ Public Health

    Google Scholar 

  • PAN-Germany (2012) Pesticide and health hazards: facts and figures. PAN Germany—Pestizid Aktions-Netzwerk eV Hamburg, Germany

    Google Scholar 

  • Parsons KC, Mineau P, Renfrew RB (2010) Effects of pesticide use in rice fields on birds. Waterbirds 33(sp1):193–218

    Google Scholar 

  • Pelosi C, Barot S, Capowiez Y, Hedde M, Vandenbulcke F (2014) Pesticides and earthworms a review. Agronomy Sustain Dev 34(1):199–228

    Article  CAS  Google Scholar 

  • Petrelli G, Mantovani A (2002) Environmental risk factors and male fertility and reproduction. Contraception 65(4):297–300

    Article  CAS  Google Scholar 

  • Reinecke SA, Reinecke AJ (2007) The impact of organophosphate pesticides in orchards on earthworms in the Western Cape South Africa. Ecotoxicol Environ Safety 66(2):244–251

    Article  CAS  Google Scholar 

  • Relyea RA, Hoverman JT (2008) Interactive effects of predators and a pesticide on aquatic communities. Oikos 117(11):1647–1658

    Article  Google Scholar 

  • Rosell G, Quero C, Coll J, Guerrero A (2008) Biorational insecticides in pest management. J Pestic Sci 33:103–121

    Article  CAS  Google Scholar 

  • Saravi SSS, Shokrzadeh M (2011) Role of pesticides in human life in the modern age: a review. In: Pesticides in the modern world-risks and benefits, pp 3–12

    Google Scholar 

  • Scholz NL, Fleishman E, Brown L, Werner I, Johnson ML, Brooks ML, Schlenk D (2012) A perspective on modern pesticides, pelagic fish declines, and unknown ecological resilience in highly managed ecosystems. Bioscience 62(4):428–434

    Article  Google Scholar 

  • Schreck E, Geret F, Gontier L, Treilhou M (2008) Neurotoxic effect and metabolic responses induced by a mixture of six pesticides on the earthworm Aporrectodeacaliginosanocturna. Chemosphere 71(10):1832–1839

    Article  CAS  Google Scholar 

  • Shepard M, Carner GR, Turnipseed SG (1977) Colonization and resurgence of insect pests of soybean in response to insecticides and field isolation. Environ Entomol 6(4):501–506

    Article  CAS  Google Scholar 

  • Shim YK, Mlynarek SP, van Wijngaarden E (2009) Parental exposure to pesticides and childhood brain cancer: US Atlantic coast childhood brain cancer study. Environ Health Perspect 117(6):1002–1006

    Article  Google Scholar 

  • Singh DK, Kumar S (2008) Nitrate reductase, arginine deaminase, urease and dehydrogenase activities in natural soil (ridges with forest) and in cotton soil after acetamiprid treatments. Chemosphere 71(3):412–418

    Article  CAS  Google Scholar 

  • Singh B, Mandal K (2013) Environmental impact of pesticides belonging to newer chemistry. In: Integrated pest management, pp 152–190

    Google Scholar 

  • Solaimalai A, Ramesh RT, Baskar M (2004) Pesticides and environment. Environmental Contamination and Bioreclamation, 345–382

    Google Scholar 

  • Srinivasulu M, Mohiddin GJ, Madakka M, Rangaswamy V (2012) Effect of pesticides on the population of Azospirillum sp. and on ammonification rate in two soils planted to groundnut (Arachis hypogaea L.). Tropical Ecol 53(1):93–104

    Google Scholar 

  • Tabashnik BE, Van Rensburg JBJ, Carrière Y (2009) Field-evolved insect resistance to Bt crops: definition, theory, and data. J Econ Entomol 102(6):2011–2025

    Article  CAS  Google Scholar 

  • Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M, Langston JW (2011) Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect 119(6):866–872

    Article  CAS  Google Scholar 

  • Trevisan M, Montepiani C, Ragozza L, Bartoletti C, Ioannilli E, Del Re AAM (1993) Pesticides in rainfall and air in Italy. Environ Pollut 80(1):31–39

    Article  CAS  Google Scholar 

  • Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L (2010) Acaricide resistance mechanisms in the two-spotted spider mite Tetranychusurticae and other important Acari: a review. Insect Biochem Mol Biol 40(8):563–572

    Article  CAS  Google Scholar 

  • Vickerman GP (1988) Farm scale evaluation of the long-term effects of different pesticide regimes on the arthropod fauna of winter wheat. In: Fields methods for the study of environmental effects of pesticides. Symposium, pp 127–135

    Google Scholar 

  • Wang LP, Shen J, Ge LQ, Wu JC, Yang GQ, Jahn GC (2010) Insecticide-induced increase in the protein content of male accessory glands and its effect on the fecundity of females in the brown planthopper NilaparvatalugensStål (Hemiptera: Delphacidae). Crop Prot 29(11):1280–1285

    Article  CAS  Google Scholar 

  • Ware GW (2008) Effects of pesticides on nontarget organisms. Residue Rev 76:173–201

    Google Scholar 

  • Weber JB, Wilkerson GG, Reinhardt CF (2004) Calculating pesticide sorption coefficients (Kd) using selected soil properties. Chemosphere 55(2):157–166

    Article  CAS  Google Scholar 

  • Whitehorn PR, O’connor S, Wackers FL, Goulson D (2012) Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336(6079):351–352

    Article  CAS  Google Scholar 

  • Xavier R, Rekha K, Bairy KL (2004) Health perspective of pesticide exposure and dietary management. Malays J Nutr 10(1):39–51

    Google Scholar 

  • Xu X, Dailey AB, Talbott EO, Ilacqua VA, Kearney G, Asal NR (2010) Associations of serum concentrations of organochlorine pesticides with breast cancer and prostate cancer in US adults. Environ Health Perspect 118(1):60–66

    Article  CAS  Google Scholar 

  • Yasmin S, D'Souza D (2010) Effects of pesticides on the growth and reproduction of earthworm: a review. Appl Environ Soil Sci

    Google Scholar 

Download references

Acknowledgements

We would like to thank Aligarh Muslim University for providing access to the research articles cited in this work without which it was not possible to accomplish the meta-analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Iqbal Rather .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rather, M.I., Khan, T.A., Farooqi, I. (2022). Assessment of Environmental Impacts of Pesticides: Evidence from Meta-Analysis. In: Rani, M., Chaudhary, B.S., Jamal, S., Kumar, P. (eds) Towards Sustainable Natural Resources. Springer, Cham. https://doi.org/10.1007/978-3-031-06443-2_13

Download citation

Publish with us

Policies and ethics