Abstract
This paper presents a method to localize street-level objects in 3D from images of an urban area. Our method processes 3D sparse point clouds reconstructed from multi-view images and leverages 2D instance segmentation to find all objects within the scene and to generate for each object the corresponding cluster of 3D points and matched 2D detections. The proposed approach is robust to changes in image sizes, viewpoint changes, and changes in the object’s appearance across different views. We validate our approach on challenging street-level crowd-sourced images from the Mapillary platform, showing a significant improvement in the mean average precision of object localization for the available Mapillary annotations. These results showcase our method’s effectiveness in localizing objects in 3D, which could potentially be used in applications such as high-definition map generation of urban environments. The code is publicly available (https://github.com/IIT-PAVIS/Multi-view-3D-Objects-Localization-from-Street-level-Scenes).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mapillary Python SDK, mapillary api v4. https://github.com/mapillary/mapillary-python-sdk. Accessed 15 Dec 2021
Mapillary, the street-level imagery platform that scales and automates mapping. https://www.mapillary.com/. Accessed 15 Jul 2021
OpenStreetMap. openstreetmap. Accessed 15 Jul 2021
Ahmed, S.M., Chew, C.M.: Density-based clustering for 3d object detection in point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10608–10617 (2020)
Jocher, G., et al.: ultralytics/yolov5: v5.0 - YOLOv5-P6 1280 models, AWS, Supervise.ly and YouTube integrations (April 2021). https://doi.org/10.5281/zenodo.4679653
Blender Online Community: Blender - a 3D modelling and rendering package. Blender Foundation, Blender Institute, Amsterdam (2016). http://www.blender.org
Branson, S., Wegner, J.D., Hall, D., Lang, N., Schindler, K., Perona, P.: From Google Maps to a fine-grained catalog of street trees. ISPRS J. Photogramm. Remote. Sens. 135, 13–30 (2018). https://doi.org/10.1016/j.isprsjprs.2017.11.008
Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3d object detection network for autonomous driving. In: Proceedings of the IEEE CVPR, pp. 1907–1915 (2017)
Crocco, M., Rubino, C., Del Bue, A.: Structure from motion with objects. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4141–4149 (2016)
Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)
Gay, P., Rubino, C., Bansal, V., Del Bue, A.: Probabilistic structure from motion with objects (PSfMO). In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3075–3084 (2017)
Hanif, M.S., Ahmad, S., Khurshid, K.: On the improvement of foreground-background model-based object tracker. IET Comput. Vis. 11(6), 488–496 (2017)
Hebbalaguppe, R., Garg, G., Hassan, E., Ghosh, H., Verma, A.: Telecom inventory management via object recognition and localisation on Google Street View images. In: 2017 IEEE WACV, pp. 725–733. IEEE (2017)
Krylov, V.A., Kenny, E., Dahyot, R.: Automatic discovery and geotagging of objects from street view imagery. Remote Sens. 10(5), 661 (2018)
Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.L.: Joint 3d proposal generation and object detection from view aggregation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–8. IEEE (2018)
Liu, C.J., Ulicny, M., Manzke, M., Dahyot, R.: Context aware object geotagging. arXiv preprint arXiv:2108.06302 (2021)
Liu, W.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Nassar, A.S., D’Aronco, S., Lefèvre, S., Wegner, J.D.: GeoGraph: graph-based multi-view object detection with geometric cues end-to-end. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 488–504. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_29
Nassar, A.S., Lefèvre, S., Wegner, J.D.: Simultaneous multi-view instance detection with learned geometric soft-constraints. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6559–6568 (2019)
Nicholson, L., Milford, M., Sünderhauf, N.: QuadricSLAM: dual quadrics from object detections as landmarks in object-oriented slam. IEEE Robot. Autom. Lett. 4(1), 1–8 (2018)
Qi, C.R., Chen, X., Litany, O., Guibas, L.J.: ImVoteNet: boosting 3d object detection in point clouds with image votes. In: Proceedings of the IEEE/CVF CVPR, pp. 4404–4413 (2020)
Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep Hough voting for 3d object detection in point clouds. In: Proceedings of the IEEE/CVF ICCV, pp. 9277–9286 (2019)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE CVPR, pp. 652–660 (2017)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413 (2017)
Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural. Inf. Process. Syst. 28, 91–99 (2015)
Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–4113 (2016)
Wang, Y., Chao, W.L., Garg, D., Hariharan, B., Campbell, M., Weinberger, K.Q.: Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection for autonomous driving. In: Proceedings of the IEEE/CVF Conference on CVPR, pp. 8445–8453 (2019)
Wegner, J.D., Branson, S., Hall, D., Schindler, K., Perona, P.: Cataloging public objects using aerial and street-level images-urban trees. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6014–6023 (2016)
Yang, S., Scherer, S.: CubeSLAM: monocular 3d object detection and slam without prior models. arXiv preprint arXiv:1806.00557 (2018)
Yin, T., Zhou, X., Krahenbuhl, P.: Center-based 3d object detection and tracking. In: Proceedings of the IEEE/CVF Conference on CVPR, pp. 11784–11793 (2021)
You, Y., et al.: Pseudo-LiDAR++: accurate depth for 3d object detection in autonomous driving. arXiv preprint arXiv:1906.06310 (2019)
Zhang, C., Fan, H., Li, W.: Automated detecting and placing road objects from street-level images. Comput. Urban Sci. 1(1), 1–18 (2021). https://doi.org/10.1007/s43762-021-00019-6
Zhang, W., Witharana, C., Li, W., Zhang, C., Li, X., Parent, J.: Using deep learning to identify utility poles with crossarms and estimate their locations from Google Street View images. Sensors 18(8), 2484 (2018)
Zhang, Z., Sun, B., Yang, H., Huang, Q.: H3DNet: 3D object detection using hybrid geometric primitives. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 311–329. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_19
Zhao, J., Zhang, X.N., Gao, H., Yin, J., Zhou, M., Tan, C.: Object detection based on hierarchical multi-view proposal network for autonomous driving. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE (2018)
Acknowledgements
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 870743.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ahmad, J., Toso, M., Taiana, M., James, S., Del Bue, A. (2022). Multi-view 3D Objects Localization from Street-Level Scenes. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13232. Springer, Cham. https://doi.org/10.1007/978-3-031-06430-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-06430-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06429-6
Online ISBN: 978-3-031-06430-2
eBook Packages: Computer ScienceComputer Science (R0)