Skip to main content

An Anomaly Detection Approach for Plankton Species Discovery

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13232)

Abstract

Plankton is one of the most abundant and diverse class of microscopic organisms inhabiting the Earth. Their enormous intra- and inter-species genetic and phenotypic diversity, coupled with the limited amount of large survey data, makes it hard to obtain a complete representation of this important class of organisms. Hence, the classification accuracy of novel supervised machine learning algorithms is bound to be limited by the incompleteness of the training data. In this work we introduce an efficient pipeline centered around a novel anomaly detection algorithm to discover and classify new plankton species, in situ, with the aim of automatically populating a plankton database in an unsupervised fashion. Our pipeline utilizes the concept of anomaly detection to separate a novel species from the ones contained in an initial existing database. Our results show that the implemented algorithm outperforms four state-of-the-art methods for outlier detection on the plankton dataset used in our analysis. Finally, using a leave-one-out approach, we prove that our pipeline is able to identify unknown plankton species with high-accuracy.

Keywords

  • Anomaly detection
  • Plankton image analysis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-06430-2_50
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-031-06430-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

References

  1. Behrenfeld, M.J., et al.: Biospheric primary production during an ENSO transition. Science 291(5513), 2594–2597 (2001)

    CrossRef  Google Scholar 

  2. Blaschko, M.B., et al.: Automatic in situ identification of plankton. In: 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION 2005), vol. 1, pp. 79–86 (2005). https://doi.org/10.1109/ACVMOT.2005.29

  3. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. SIGMOD Rec. 29(2), 93–104 (2000). https://doi.org/10.1145/335191.335388

    CrossRef  Google Scholar 

  4. Buitinck, L., et al.: API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108–122 (2013)

    Google Scholar 

  5. Cheng, K., Cheng, X., Wang, Y., Bi, H., Benfield, M.C.: Enhanced convolutional neural network for plankton identification and enumeration. PLOS ONE 14(7), 1–17 (2019). https://doi.org/10.1371/journal.pone.0219570

    CrossRef  Google Scholar 

  6. Fossum, T.O., et al.: Toward adaptive robotic sampling of phytoplankton in the coastal ocean. Sci. Rob. 4(27), eaav3041 (2019). https://doi.org/10.1126/scirobotics.aav3041

  7. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC 3(6), 610–621 (1973). https://doi.org/10.1109/TSMC.1973.4309314

    CrossRef  Google Scholar 

  8. Huang, Z., Leng, J.: Analysis of hu’s moment invariants on image scaling and rotation, vol. 7, pp. V7–476 (2010). https://doi.org/10.1109/ICCET.2010.5485542

  9. Hughes, A.J., et al.: Quanti.us: a tool for rapid, flexible, crowd-based annotation of images. Nature 15(8), 587–590 (2018). https://doi.org/10.1038/s41592-018-0069-0

    CrossRef  Google Scholar 

  10. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422 (2008). https://doi.org/10.1109/ICDM.2008.17

  11. Lumini, A., Nanni, L.: Deep learning and transfer learning features for plankton classification. Ecol. Inf. 51, 33–43 (2019)

    CrossRef  Google Scholar 

  12. Pastore, V.P., Zimmerman, T., Biswas, S.K., Bianco, S.: Establishing the baseline for using plankton as biosensor. In: Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XVII, vol. 10881, p. 108810H. International Society for Optics and Photonics (2019)

    Google Scholar 

  13. Pastore, V.P., Zimmerman, T.G., Biswas, S.K., Bianco, S.: Annotation-free learning of plankton for classification and anomaly detection. Sci. Rep. 10(1), 12142 (2020). https://doi.org/10.1038/s41598-020-68662-3

  14. Rousseeuw, P., Driessen, K.: A fast algorithm for the minimum covariance determinant estimator. Technometrics 41, 212–223 (1999). https://doi.org/10.1080/00401706.1999.10485670

    CrossRef  Google Scholar 

  15. Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., Platt, J.: Support vector method for novelty detection. In: Proceedings of the 12th International Conference on Neural Information Processing Systems, NIPS 1999, pp. 582–588. MIT Press, Cambridge (1999)

    Google Scholar 

  16. Schröder, S.M., Kiko, R., Koch, R.: Morphocluster: efficient annotation of plankton images by clustering. Sensors 20(11), 3060 (2020)

    CrossRef  Google Scholar 

  17. Sosik, H.M., Olson, R.J.: Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry. Limnol. Oceanogr. Methods 5(6), 204–216 (2007)

    CrossRef  Google Scholar 

  18. Sournia, A., Chrdtiennot-Dinet, M.J., Ricard, M.: Marine phytoplankton: how many species in the world ocean? J. Plankton Res. 13(5), 1093–1099 (1991). https://doi.org/10.1093/plankt/13.5.1093

    CrossRef  Google Scholar 

  19. Yang, Z., Fang, T.: On the accuracy of image normalization by zernike moments. Image Vision Comput. 28(3), 403–413 (2010). https://doi.org/10.1016/j.imavis.2009.06.010

    CrossRef  Google Scholar 

  20. Zheng, H., Wang, R., Yu, Z., Wang, N., Gu, Z., Zheng, B.: Automatic plankton image classification combining multiple view features via multiple kernel learning. BMC Bioinf. 18(16), 570 (2017). https://doi.org/10.1186/s12859-017-1954-8

    CrossRef  Google Scholar 

  21. Zimmerman, T., Smith, B.: Lensless stereo microscopic imaging. In: ACM SIGGRAPH 2007: Emerging Technologies, SIGGRAPH 2007, p. 15 (2007). https://doi.org/10.1145/1278280.1278296

Download references

Acknowledgements

We thank all faculty and students in the National Science Foundation Center for Cellular Construction and the Machine Learning Genoa Center (MaLGa) for discussion and critical feedback on the general idea and pipeline. This material is partially based upon work supported by the National Science Foundation under Grant No. DBI-1548297.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Paolo Pastore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Pastore, V.P., Megiddo, N., Bianco, S. (2022). An Anomaly Detection Approach for Plankton Species Discovery. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13232. Springer, Cham. https://doi.org/10.1007/978-3-031-06430-2_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06430-2_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06429-6

  • Online ISBN: 978-3-031-06430-2

  • eBook Packages: Computer ScienceComputer Science (R0)