Skip to main content

Road Quality Classification

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2022 (ICIAP 2022)


Road quality significantly influences safety and comfort while driving. Especially for most kinds of two-wheelers, road damage is a real threat, where vehicle components and enjoyment are heavily impacted by road quality. This can be avoided by planning a route considering the surface quality. We propose a new publicly available and manually annotated dataset collected from Google Street View photos. This dataset is devoted to a road quality classification task considering six levels of damage. We evaluated some preprocessing methods such as shadow removal, CLAHE, and data augmentation. We adapted several pre-trained networks to classify road quality. The best performance was reached by MobileNet using augmented dataset (75.55%).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. 1.,

  2. 2.

  3. 3.

  4. 4.

    Including output classification layers for the ImageNet dataset.


  1. Anaconda software distribution (2020).

  2. Afenika, A., Gunawan, P.H., Tarwidi, D.: Classification of road surface quality based on SVM method. J. Phys. Conf. Ser. 1641, 012064 (2020).

  3. Arya, D., et al.: Transfer learning-based road damage detection for multiple countries (2020)

    Google Scholar 

  4. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (6 2002).,

  5. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (July 2017)

    Google Scholar 

  6. Cimpoi, M., Maji, S., Kokkinos, I., Vedaldi, A.: Deep filter banks for texture recognition, description, and segmentation (2015)

    Google Scholar 

  7. Cun, X., Pun, C.M., Shi, C.: Towards ghost-free shadow removal via dual hierarchical aggregation network and shadow matting gan (2019)

    Google Scholar 

  8. Doshi, K., Yilmaz, Y.: Road damage detection using deep ensemble learning (2020)

    Google Scholar 

  9. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. Int. J. Robot. Res. (IJRR) (2013).

  10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

  12. Hoffmann, M., Mock, M., May, M.: Road-quality classification and bump detection with bicycle-mounted smartphones. In: CEUR Workshop Proceedings, vol. 1088, pp. 39–43 (01 2013)

    Google Scholar 

  13. Howard, A.G., et al.: Mobilenets: Efficient convolutional neural networks for mobile vision applications. CoRR abs/1704.04861 (2017)

    Google Scholar 

  14. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks (2018)

    Google Scholar 

  15. Lei, X., Liu, C., Li, L., Wang, G.: Automated pavement distress detection and deterioration analysis using street view map. IEEE Access 8, 76163–76172 (2020).

    Article  Google Scholar 

  16. Ma, K., Hoai, M., Samaras, D.: Large-scale continual road inspection: visual infrastructure assessment in the wild. In: Proceedings of British Machine Vision Conference (2017).

  17. Maddern, W., Pascoe, G., Linegar, C., Newman, P.: 1 Year, 1000 km: the oxford robotcar dataset. Int. J. Robot. Res. (IJRR) 36(1), 3–15 (2017)

    Google Scholar 

  18. Nolte, M., Kister, N., Maurer, M.: Assessment of deep convolutional neural networks for road surface classification. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 381–386 (2018).

  19. Pei, Z., Zhang, X., Lin, R., Shen, H., Tang, J., Yang, Y.: Submission of dd-vision team in global road damage detection 2020 (2020). password: xzc6,,

  20. Pezzementi, Z., et al.: Comparing apples and oranges: off-road pedestrian detection on the NREC agricultural person-detection dataset (2017)

    Google Scholar 

  21. Rateke, T., Justen, K.A., von Wangenheim, A.: Road surface classification with images captured from low-cost cameras - road traversing knowledge (RTK) dataset. Revista de Informática Teórica e Aplicada (RITA) (2019)

    Google Scholar 

  22. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015).

    Article  MathSciNet  Google Scholar 

  23. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks (2019)

    Google Scholar 

  24. Shinzato, P.Y., et al.: Carina dataset: an emerging-country urban scenario benchmark for road detection systems. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC) (2016)., dataset available from:

  25. Smith, M., Baldwin, I., Churchill, W., Paul, R., Newman, P.: The new college vision and laser data set. Int. J. Robot. Res. 28, 595–599 (2009).

  26. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning (2016)

    Google Scholar 

  27. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision (June 2016).

  28. Tan, M., Le, Q.V.: Efficientnet: rethinking model scaling for convolutional neural networks (2020)

    Google Scholar 

  29. Tan, M., Le, Q.V.: Efficientnetv2: smaller models and faster training (2021)

    Google Scholar 

  30. Tiwari, S., Bhandari, R., Raman, B.: Roadcare: a deep-learning based approach to quantifying road surface quality. In: Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies, pp. 231–242. COMPASS 2020, Association for Computing Machinery, New York, NY, USA (2020).

  31. Zanin, M., Messelodi, S., Modena, C.: Diplodoc road stereo sequence (April 2013)., dataset available from:

  32. Zuiderveld, K.: Contrast limited adaptive histogram equalization. Graph. Gems IV, 474–485 (1994)

    Google Scholar 

Download references


This research has been supported by SGS grant No. SGS20/213/OHK3/3T/18 and by GACR grant No. GA18-18080S.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Magda Friedjungová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lank, M., Friedjungová, M. (2022). Road Quality Classification. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13232. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06429-6

  • Online ISBN: 978-3-031-06430-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics