Abstract
Table detection is often involved in many applications of document analysis as tables are frequently used to present structured information. In this context, we are interested in extracting table regions in document images. More precisely, we propose a method for table detection based on a recent edge line detector which is developed in the context of digital geometry and it allows to handle noisy document images. The extracted lines are then used to reconstruct the tables contained in the image. The method has been evaluated and compared to other state-of-the-art methods and shown a very competitive result.
Keywords
- Line detector
- Blurred segment
- Adaptive directional scan
- Materialized table extraction
- Digital geometry
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
A similar line model has been used in [14] for line verification and table extraction. Their model consists in separating the 1D intensity profile, from left to right, into 3 zones: the intensity should begin to increase then (potentially) stabilize and decrease.
References
ICDAR 2013 table competition dataset. https://www.tamirhassan.com/html/competition.html
Marmot dataset. https://www.icst.pku.edu.cn/cpdp/sjzy/index.htm
OpenCV: Open computer vision. https://opencv.org/
UNLV table dataset. https://github.com/tesseract-ocr/
Arif, S., Shafait, F.: Table detection in document images using foreground and background features. In: 2018 Digital Image Computing: Techniques and Applications (DICTA), pp. 1–8 (2018). https://doi.org/10.1109/DICTA.2018.8615795
Cesarini, F., Marinai, S., Sarti, L., Soda, G.: Trainable table location in document images. In: 2002 International Conference on Pattern Recognition, vol. 3, pp. 236–240 (2002). https://doi.org/10.1109/ICPR.2002.1047838
Even, P., Ngo, P., Kerautret, B.: Thick line segment detection with fast directional tracking. In: Ricci, E., Rota Bulò, S., Snoek, C., Lanz, O., Messelodi, S., Sebe, N. (eds.) ICIAP 2019. LNCS, vol. 11752, pp. 159–170. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30645-8_15
Fang, J., Tao, X., Tang, Z., Qiu, R., Liu, Y.: Dataset, ground-truth and performance metrics for table detection evaluation. In: 2012 10th IAPR International Workshop on Document Analysis Systems, pp. 445–449 (2012). https://doi.org/10.1109/DAS.2012.29
Farrukh, W., et al.: Interpreting data from scanned tables. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 2, pp. 5–6 (2017). https://doi.org/10.1109/ICDAR.2017.250
Gatos, B., Danatsas, D., Pratikakis, I., Perantonis, S.: Automatic table detection in document images. vol. 3686, pp. 609–618 (08 2005). https://doi.org/10.1007/11551188_67
Gilani, A., Qasim, S.R., Malik, I., Shafait, F.: Table detection using deep learning. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 771–776 (2017). https://doi.org/10.1109/ICDAR.2017.131
Green, E., Krishnamoorthy, M.: Model-based analysis of printed tables, pp. 214–217, January 1995. https://doi.org/10.1109/ICDAR.1995.598979
Göbel, M., Hassan, T., Oro, E., Orsi, G.: ICDAR 2013 table competition. In: 2013 12th International Conference on Document Analysis and Recognition, pp. 1449–1453 (2013). https://doi.org/10.1109/ICDAR.2013.292
Alhéritière, H., Amaïeur, W., Cloppet, F., Kurtz, C., Ogier, J.-M., Vincent, N.: Straight line reconstruction for fully materialized table extraction in degraded document images. In: Couprie, M., Cousty, J., Kenmochi, Y., Mustafa, N. (eds.) DGCI 2019. LNCS, vol. 11414, pp. 317–329. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14085-4_25
Hu, J., Kashi, R., Lopresti, D., Wilfong, G.: Medium-independent table detection, December 1999
Isabelle, D.R., Fabien, F., Jocelyne, R.D.: Optimal blurred segments decomposition of noisy shapes in linear time. Comput. Graph. 30(1), 30–36 (2006)
Kerautret, B., Even, P.: Blurred segments in gray level images for interactive line extraction. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 176–186. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10210-3_14
Kieninger, T.: Table structure recognition based on robust block segmentation, pp. 22–32 (1998)
Kieninger, T., Dengel, A.: An approach towards benchmarking of table structure recognition results, pp. 1232–1236, August 2005. https://doi.org/10.1109/ICDAR.2005.47
Klette, R., Rosenfeld, A.: Digital Geometry - Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)
Mandal, S., Chowdhury, S., Das, A., Chanda, B.: Simple and effective table detection system from document images. Int. J. Doc. Anal. Recogn. 8, 172–182 (2006). https://doi.org/10.1007/s10032-005-0006-5
Minghao, L., Lei, C., Shaohan, H., Furu, W., Ming, Z., Zhoujun, L.: TableBank: a benchmark dataset for table detection and recognition (2019)
Prasad, D., Gadpal, A., Kapadni, K., Visave, M., Sultanpure, K.: Cascade TabNet: an approach for end to end table detection and structure recognition from image-based documents (2020)
Reveillès, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse d’état, Université Strasbourg 1 (1991)
Shafait, F., Smith, R.: Table detection in heterogeneous documents. In: DAS 2010, pp. 65–72. Association for Computing Machinery, New York, NY, USA (2010). https://doi.org/10.1145/1815330.1815339
Shahab, A., Shafait, F., Kieninger, T., Dengel, A.: An open approach towards the benchmarking of table structure recognition systems. In: Proceedings of the 9th IAPR International Workshop on Document Analysis Systems, DAS 2010, pp. 113–120. Association for Computing Machinery, New York, NY, USA (2010). https://doi.org/10.1145/1815330.1815345
Watanabe, T., Naruse, H., Luo, Q., Sugie, N.: Structure analysis of table-form documents on the basis of the recognition of vertical and horizontal line segments. In: Proceedings of International Conference on Document Analysis and Recognition (ICDAR 1991), pp. 638–646 (1991)
Kieninger, T., Dengel, A.: The T-Recs table recognition and analysis system. In: Lee, S.-W., Nakano, Y. (eds.) DAS 1998. LNCS, vol. 1655, pp. 255–270. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48172-9_21
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ngo, P. (2022). Digital Line Segment Detection for Table Reconstruction in Document Images. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13232. Springer, Cham. https://doi.org/10.1007/978-3-031-06430-2_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-06430-2_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06429-6
Online ISBN: 978-3-031-06430-2
eBook Packages: Computer ScienceComputer Science (R0)
