Skip to main content

Memory Guided Road Segmentation

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2022 (ICIAP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13231))

Included in the following conference series:

  • 1701 Accesses

Abstract

In self-driving car applications, there is a requirement to predict the location of the road given an input RGB front-facing image. We propose a framework that utilizes an interleaving strategy of large and small feature extractors assisted via a propagating shared feature space allowing us to realize gains of over 2.5X in speed with a negligible loss in the accuracy of predictions. By utilizing the gist of previously observed frames, we train the network to predict the current road with greater accuracy and lesser deviation from previous frames.

P. Venkatesh, R. Rana and V. Jain—The authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  2. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. https://dl.acm.org/doi/10.1007/s11263-009-0275-4

  3. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: Deepdriving: learning affordance for direct perception in autonomous driving. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). ICCV 2015, pp. 2722–2730. IEEE Computer Society, USA (2015). https://doi.org/10.1109/ICCV.2015.312

  4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  5. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. arXiv:1711.03938 [cs] (2017)

  6. Dosovitskiy, A., Ros, G., Codevilla, F., López, A.M., Koltun, V.: Carla: an open urban driving simulator. arXiv:abs/1711.03938 (2017)

  7. Hu, P., Heilbron, F.C., Wang, O., Lin, Z.L., Sclaroff, S., Perazzi, F.: Temporally distributed networks for fast video semantic segmentation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8815–8824 (2020)

    Google Scholar 

  8. Kim, Y.: Two-step recurnet - younghyun. https://sites.google.com/site/entertain84/research-project/TSRN

  9. Kolesnikov, A., et al.: Big Transfer (BiT): general visual representation learning. arXiv:1912.11370 [cs] (2020). version: 3

  10. Liu, M., Zhu, M., White, M., Li, Y., Kalenichenko, D.: Looking fast and slow: memory-guided mobile video object detection. arXiv:1903.10172 [cs] (2019)

  11. Liu, X., Deng, Z., Yang, Y.: Recent progress in semantic image segmentation. Artif. Intell. Rev. 52(2), 1089–1106 (2019). https://doi.org/10.1007/s10462-018-9641-3

  12. Lo, S.Y., Hang, H.M., Chan, S.W., Lin, J.J.: Efficient dense modules of asymmetric convolution for real-time semantic segmentation. In: Proceedings of the ACM Multimedia Asia (2019)

    Google Scholar 

  13. Nirkin, Y., Wolf, L., Hassner, T.: Hyperseg: patch-wise hypernetwork for real-time semantic segmentation. In: CVPR (2021)

    Google Scholar 

  14. Rong, G., et al.: LGSVL simulator: a high fidelity simulator for autonomous driving. arXiv:2005.03778 [cs, eess] (2020)

  15. Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: high-fidelity visual and physical simulation for autonomous vehicles. arXiv:1705.05065 [cs] (2017)

  16. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017). https://doi.org/10.1109/TPAMI.2016.2572683

    Article  Google Scholar 

  17. Xavier, A.: An introduction to convlstm, April 2019. https://medium.com/neuronio/an-introduction-to-convlstm-55c9025563a7

  18. Yu, F., Koltun, V.: Multi-Scale Context Aggregation by Dilated Convolutions. arXiv:1511.07122 [cs] (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Jain .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Venkatesh, P., Rana, R., Jain, V. (2022). Memory Guided Road Segmentation. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13231. Springer, Cham. https://doi.org/10.1007/978-3-031-06427-2_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06427-2_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06426-5

  • Online ISBN: 978-3-031-06427-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics