Skip to main content

Chatbot-Enhanced Requirements Resolution for Automated Service Compositions

  • 884 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 1580)


This work addresses the automatic resolution of software requirements. In the vision of On-The-Fly Computing, software services should be composed on demand, based solely on natural language input from human users. To enable this, we build a chatbot solution that works with human-in-the-loop support to receive, analyze, correct, and complete their software requirements. The chatbot is equipped with a natural language processing pipeline and a large knowledge base, as well as sophisticated dialogue management skills to enhance the user experience. Previous solutions have focused on analyzing software requirements to point out errors such as vagueness, ambiguity, or incompleteness. Our work shows how apps can collaborate with users to efficiently produce correct requirements. We developed and compared three different chatbot apps that can work with built-in knowledge. We rely on ChatterBot, DialoGPT and Rasa for this purpose. While DialoGPT provides its own knowledge base, Rasa is the best system to combine the text mining and knowledge solutions at our disposal. The evaluation shows that users accept 73% of the suggested answers from Rasa, while they accept only 63% from DialoGPT or even 36% from ChatterBot.


  • On-The-Fly Computing
  • Chatbot
  • Knowledge base

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-06417-3_56
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-031-06417-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.


  1. 1.

    The dataset can be found at, accessed 2021-12-17.

  2. 2.

    ChatterBot can be found at, accessed 2021-12-17.


  1. Adamopoulou, E., Moussiades, L.: An overview of chatbot technology. In: Maglogiannis, I., Iliadis, L., Pimenidis, E. (eds.) AIAI 2020. IAICT, vol. 584, pp. 373–383. Springer, Cham (2020).

    CrossRef  Google Scholar 

  2. Ahmed, M.: Knowledge base enhanced & user-centric dialogue design for OTF Computing. Master’s thesis, Paderborn University, Germany (2022)

    Google Scholar 

  3. Bäumer, F.S.: Indikatorbasierte Erkennung und Kompensation von ungenauen und unvollständig beschriebenen Softwareanforderungen [Indicator-based detection and compensation of inaccurate and incompletely described software requirements]. Ph.D. thesis, Paderborn University, Germany (2017)

    Google Scholar 

  4. Bäumer, F.S., Kersting, J., Geierhos, M.: Natural language processing in OTF Computing: challenges and the need for interactive approaches. Computers 8(1), 1–14 (2019).

    CrossRef  Google Scholar 

  5. Bocklisch, T., Faulkner, J., Pawlowski, N., Nichol, A.: Rasa: open source language understanding and dialogue management. CoRR, pp. 2–9 (2017)

    Google Scholar 

  6. Bunk, T., Varshneya, D., Vlasov, V., Nichol, A.: DIET: lightweight language understanding for dialogue systems. CoRR (2020)

    Google Scholar 

  7. Casas, J., Tricot, M.O., Abou Khaled, O., Mugellini, E., Cudré-Mauroux, P.: Trends & methods in chatbot evaluation. In: Companion Publication of the ICMI 2020, pp. 280–286. ACM (2020).

  8. Collaborative Research Center 901: CRC 901 - On-The-Fly Computing - Subproject B1.

  9. Cox, G.: ChatterBot (2021). Accessed 18 Oct 2021

  10. Dollmann, M., Geierhos, M.: On- and off-topic classification and semantic annotation of user-generated software requirements. In: Su, J., Carreras, X., Duh, K. (eds.) Proceedings of EMNLP 2016, pp. 1807–1816. ACL (2016).

  11. Friesen, E.: Requirements Engineering im OTF-Computing: Informationsextraktion und Unvollständigkeitskompensation mittels domänenspezifischer Wissensbasis [Requirements Engineering in OTF-Computing: Information Extraction and Incompleteness Compensation by means of a Domain-specific Knowledge Base]. Master’s thesis, Paderborn University, Germany (2019)

    Google Scholar 

  12. Friesen, E., Bäumer, F.S., Geierhos, M.: CORDULA: software requirements extraction utilizing chatbot as communication interface. In: Schmid, K., et al. (eds.) Joint Proceedings of REFSQ-2018 Workshops, Doctoral Symposium, Live Studies Track, and Poster Track co-located with the 23rd International Conference on Requirements Engineering: Foundation for Software Quality. CEUR Workshop Proceedings, vol. 2075. (2018)

    Google Scholar 

  13. Karl, H., Kundisch, D., Meyer auf der Heide, F., Wehrheim, H.: A case for a new IT ecosystem: On-The-Fly Computing. Bus. Inf. Syst. Eng. 62(6), 467–481 (2019).

    CrossRef  Google Scholar 

  14. Kersting, J., Bäumer, F.S.: Semantic tagging of requirement descriptions: a transformer-based approach. In: Proceedings of the 17th AC, pp. 119–123. IADIS (2020)

    Google Scholar 

  15. Ortu, M., Destefanis, G., Adams, B., Murgia, A., Marchesi, M., Tonelli, R.: The JIRA repository dataset: understanding social aspects of software development. In: Bener, A., Minku, L.L., Turhan, B. (eds.) Proceedings of the 11th International Conference on Predictive Models and Data Analytics in Software Engineering, PROMISE 2015, pp. 1–4. ACM (2015).

  16. Shawar, B.A., Atwell, E.: ALICE chatbot: trials and outputs. Computación y Sistemas 19(4), 625–632 (2015).

  17. Surana, C.S.R.K., Shriya Gupta, D.B., Shankar, S.P.: Intelligent chatbot for requirements elicitation and classification. In: 2019 4th International Conference on Recent Trends on Electronics, Information, Communication Technology (RTEICT), pp. 866–870. IEEE (2019).

  18. Surendran, A., Murali, R., Babu, R.K.R.: Conversational AI - a retrieval based chatbot. EasyChair Preprint no. 4020 (2020)

    Google Scholar 

  19. Thorat, S., Jadhav, V.: A review on implementation issues of rule-based chatbot systems. In: Proceedings of the International Conference on Innovative Computing & Communications (ICICC 2020), pp. 1–6. Springer (2020)

    Google Scholar 

  20. Varghese, E., Pillai, M.T.R.: A standalone generative conversational interface using deep learning. In: 2018 2nd ICICCT, pp. 1915–1920. IEEE (2018).

  21. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st NIPS, pp. 5998–6008. Curran (2017)

    Google Scholar 

  22. Zhang, Y., et al.: DialoGPT: large-scale generative pre-training for conversational response generation. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J. (eds.) Proceedings of the 58th Annual Meeting of the ACL, pp. 270–278. ACL (2020)

    Google Scholar 

Download references


This work was partially supported by the German Research Foundation (DFG) within the Collaborative Research Center On-The-Fly Computing (CRC 901). We thank F. S. Bäumer, E. Friesen, and others for their support.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Joschka Kersting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Kersting, J., Ahmed, M., Geierhos, M. (2022). Chatbot-Enhanced Requirements Resolution for Automated Service Compositions. In: Stephanidis, C., Antona, M., Ntoa, S. (eds) HCI International 2022 Posters. HCII 2022. Communications in Computer and Information Science, vol 1580. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06416-6

  • Online ISBN: 978-3-031-06417-3

  • eBook Packages: Computer ScienceComputer Science (R0)