Skip to main content

Lightweight Encoder-Decoder Architecture for Foot Ulcer Segmentation

  • Conference paper
  • First Online:
Frontiers of Computer Vision (IW-FCV 2022)

Abstract

Continuous monitoring of foot ulcer healing is needed to ensure the efficacy of a given treatment and to avoid any possibility of deterioration. Foot ulcer segmentation is an essential step in wound diagnosis. We developed a model that is similar in spirit to the well-established encoder-decoder and residual convolution neural networks. Our model includes a residual connection along with a channel and spatial attention integrated within each convolution block. A simple patch-based approach for model training, test time augmentations, and majority voting on the obtained predictions resulted in superior performance. Our model did not leverage any readily available backbone architecture, pre-training on a similar external dataset, or any of the transfer learning techniques. The total number of network parameters being around 5 million made it a significantly lightweight model as compared with the available state-of-the-art models used for the foot ulcer segmentation task. Our experiments presented results at the patch-level and image-level. Applied on publicly available Foot Ulcer Segmentation (FUSeg) Challenge dataset from MICCAI 2021, our model achieved state-of-the-art image-level performance of 88.22% in terms of Dice similarity score and ranked second in the official challenge leaderboard. We also showed an extremely simple solution that could be compared against the more advanced architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    (https://uwm-bigdata.github.io/wound-segmentation) last accessed on Jan. 6, 2022.

References

  1. Kumar, N., et al.: A multi-organ nucleus segmentation challenge. IEEE Trans. Med. Imaging 39(5), 1380–1391 (2020). https://doi.org/10.1109/TMI.2019.2947628

  2. Bahdanau, D., Cho, K.H., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, September 2014. https://arxiv.org/abs/1409.0473v7

  3. Brown, T.B., et al.: Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 33, 1877–1901 (2020). https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

    Google Scholar 

  4. Caicedo, J.C., et al.: Nucleus segmentation across imaging experiments: the 2018 data science bowl. Nat. Methods 16(12), 1247–1253 (2019). https://doi.org/10.1038/s41592-019-0612-7

    Article  MathSciNet  Google Scholar 

  5. Chino, D.Y., Scabora, L.C., Cazzolato, M.T., Jorge, A.E., Traina, C., Traina, A.J.: Segmenting skin ulcers and measuring the wound area using deep convolutional networks. Comput. Methods Programs Biomed. 105376. https://doi.org/10.1016/j.cmpb.2020.105376

  6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, vol. 1, pp. 4171–4186, October 2019. https://arxiv.org/abs/1810.04805v2

  7. Dosovitskiy, A., et al.: An Image is Worth \(16 \times 16\) Words: Transformers for Image Recognition at Scale, October 2020. https://arxiv.org/abs/2010.11929v2

  8. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 386–397 (2020). https://doi.org/10.1109/TPAMI.2018.2844175

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016). http://image-net.org/challenges/LSVRC/2015/

  10. Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs). arXiv preprint arXiv:1606.08415, June 2016. https://arxiv.org/abs/1606.08415v4

  11. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018). http://image-net.org/challenges/LSVRC/2017/results

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM (6), 84–90. https://doi.org/10.1145/3065386

  13. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, issue number 4, pp. 3431–3440. https://doi.org/10.1109/CVPR.2015.7298965

  14. Luo, W., Li, Y., Urtasun, R., Zemel, R.: Understanding the effective receptive field in deep convolutional neural networks. In: Advances in Neural Information Processing Systems (Nips), pp. 4905–4913 (2016). https://arxiv.org/abs/1701.04128

  15. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems. Curran Associates Inc. https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings

    Google Scholar 

  18. Wang, C., et al.: Fully automatic wound segmentation with deep convolutional neural networks. Sci. Rep. (1), 21897. https://doi.org/10.1038/s41598-020-78799-w

  19. Wang, C., et al.: FUSeg: The Foot Ulcer Segmentation Challenge. arXiv preprint arXiv:2201.00414, January 2022. https://arxiv.org/abs/2201.00414

  20. Wang, L., Pedersen, P.C., Agu, E., Strong, D.M., Tulu, B.: Area determination of diabetic foot ulcer images using a cascaded two-stage SVM-based classification. IEEE Trans. Biomed. Eng. 64(9), 2098–2109 (2017). https://doi.org/10.1109/TBME.2016.2632522

    Article  Google Scholar 

  21. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018). https://openaccess.thecvf.com/content_cvpr_2018/html/Wang_Non-Local_Neural_Networks_CVPR_2018_paper.html

  22. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018, Part VII. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  23. Wu, H., Pan, J., Li, Z., Wen, Z., Qin, J.: Automated skin lesion segmentation via an adaptive dual attention module. IEEE Trans. Med. Imaging (1), 357–370. https://doi.org/10.1109/TMI.2020.3027341

  24. You, Y., Li, J., et al.: Large Batch Optimization for Deep Learning: Training BERT in 76 minutes. arXiv preprint arXiv:1904.00962, April 2019. https://arxiv.org/abs/1904.00962v5

Download references

Acknowledgment

This study was supported by the BK21 FOUR project (AI-driven Convergence Software Education Research Program) funded by the Ministry of Education, School of Computer Science and Engineering, Kyungpook National University, Korea (4199990214394).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Ki Jung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ali, S., Mahmood, A., Jung, S.K. (2022). Lightweight Encoder-Decoder Architecture for Foot Ulcer Segmentation. In: Sumi, K., Na, I.S., Kaneko, N. (eds) Frontiers of Computer Vision. IW-FCV 2022. Communications in Computer and Information Science, vol 1578. Springer, Cham. https://doi.org/10.1007/978-3-031-06381-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06381-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06380-0

  • Online ISBN: 978-3-031-06381-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics