Skip to main content

Inter-satellite Optical Analog Network Coding Using Modulated Retro Reflectors

  • Conference paper
  • First Online:
Science and Technologies for Smart Cities (SmartCity 360 2021)

Abstract

Information sharing, real-time data exchange, and low SWaP (Size, Weight and Power) inter-satellite communication are the key technologies for cooperative satellite. In order to build a high-throughput inter-satellite optical communication network suitable for micro-satellites, an analog network coding (ANC) system based on modulated retro reflectors (MRR) was designed for two way relay channel (TWRC). Different from traditional-scheduling (TS) based TWRC, MRR ANC saves two sets of pointing, acquisition and tracking (PAT) devices at the end terminals. Specifically, our proposed MRR ANC system is suitable for small satellites with tight SWaP constrains. In this paper, we solve the power allocation problem of MRR ANC using Lagrange multiplier method under sum rate maximization criteria. We evaluated the system throughput and bit error rate (BER) performances using numerical simulations. The results show that both sum rate and BER performances of MRR ANC are improved using our proposed method compared with conventional uniform power allocation scheme. When each bidirectional link distance is 200 km, the non-channel-coded BER of each terminal is \({10^{-5}}\) using on-off keying (OOK) modulation. Compared with traditional scheduling, the system throughput of MRR ANC was improved by 1.8 times.

This work was supported in part by the Key Research Program of the Chinese Academy of Sciences, under Grant ZDRW-KT-2019-1-0103.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boroson, D.M., Robinson, B.S.: The lunar laser communication demonstration: NASA’s first step toward very high data rate support of science and exploration missions. In: Elphic, R.C., Russell, C.T. (eds.) The Lunar Atmosphere and Dust Environment Explorer Mission (LADEE), pp. 115–128. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18717-4_6

    Chapter  Google Scholar 

  2. Chang, C.W., Cheng, L.Y., Luo, D., et al.: Progress of space laser communication and conception of its application in space based networks. J. Spacecr. TT C Technol. 34(2), 176–183 (2015)

    Google Scholar 

  3. Pulliam, J., et al.: TSAT network architecture. In: MILCOM 2008–2008 IEEE Military Communications Conference, pp. 115–128. IEEE (2008). https://doi.org/10.1109/MILCOM.2008.4753508

  4. Thomas, S., Andreas, H., et al.: ESA long-term monitoring of space debris in GEO, GTO and first surveys of MEO. In: 28th Inter-Agency Debris Coordination Committee (IADC) Meeting, International Association of Drilling Contractors IADC (2010)

    Google Scholar 

  5. Gao, D.R., Li, T.L., Sun, Y., et al.: Latest developments and trends of space laser communication. Chin. Opt. 11(6), 901–913 (2018)

    Article  Google Scholar 

  6. Jiang, H.L., Fu, Q., Zhao, Y.W., et al.: Development status and trend of space information network and laser communication. Chin. J. Internet Things 3(2), 1–8 (2019)

    Google Scholar 

  7. Shubert, P., Cline, A., McNally, J., Pierson, R.: Design of low SWaP optical terminals for free space optical communications. In: Free-Space Laser Communication and Atmospheric Propagation XXIX, vol. 10096 (2017)

    Google Scholar 

  8. Radhakrishnan, R., Edmonson, W.W.: Survey of inter-satellite communication for small satellite systems: physical layer to network layer view. IEEE Commun. Surv. Tutor. 18(4), 2442–2473 (2016)

    Article  Google Scholar 

  9. Arnon, S., Barry, J., Karagiannidis, G., et al.: Advanced optical wireless communication systems. Hybrid RF/FSO Commun. (11), 273–302 (2012)

    Google Scholar 

  10. Li, X.: Research on the performance of the Modulating Retro-reflector free Space Optical Communications over Atmospheric Turbulence. Jilin Province (2020)

    Google Scholar 

  11. Goetz, P.G., et al.: Modulating retro-reflector lasercom systems for small un-manned vehicles. IEEE J. Sel. Areas Commun. 30(5), 986–992 (2012)

    Article  Google Scholar 

  12. Hu, J., Wang, J., Wang, K., et al.: The research on aperture averaging of modulating retro-reflector optical communication. In: 2020 International Conference on Wireless Communications and Signal Processing (WCSP) (2020)

    Google Scholar 

  13. Velazco, J.E., Griffin, J., Wernicke, D., et al.: High data rate inter-satellite omnidirectional optical communicator. In: 2019 IEEE Aerospace Conference (2019)

    Google Scholar 

  14. Liu, D.X., Zeng, J., Sun, S.F., et al.: Performance budget of space optical communication in atmospheric channel. Radio Commun. 536(10), 68–72 (2020)

    Google Scholar 

  15. Xu, K., Zhang, D., Xu, Y., Ma, W.: On the equivalence of two optimal power-allocation schemes for A-TWRC. IEEE Trans. Veh. Technol. 63(4), 1970–1976 (2014)

    Article  Google Scholar 

  16. Rankov, B., Wittneben, A.: Spectral efficient protocols for halfduplex fading relay channels. IEEE J. Sel. Areas Commun. 25(2), 379–389 (2007)

    Article  Google Scholar 

  17. Katti, S.R.: Network Coded Wireless Architecture. Massachusetts Institute of Technology (2009)

    Google Scholar 

  18. Li, X., Zhao, X., Zhang, P., et al.: Probability density function of turbulence fading in MRR free space optical link and its applications in MRR free space optical communications. IET Commun. 11(16), 2476–2481 (2017)

    Article  Google Scholar 

  19. Katti, S., Gollakota, S., Katabi, D.: Embracing wireless interference: analog network coding. ACM SIGCOMM Comput. Commun. Rev. 9(4), 1–14 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yanmei, J., Congmin, L., Pengfei, S., Lu, L. (2022). Inter-satellite Optical Analog Network Coding Using Modulated Retro Reflectors. In: Paiva, S., et al. Science and Technologies for Smart Cities. SmartCity 360 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 442. Springer, Cham. https://doi.org/10.1007/978-3-031-06371-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06371-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06370-1

  • Online ISBN: 978-3-031-06371-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics