Skip to main content

Fractional Brownian Motion

  • Chapter
  • First Online:
Continuous Time Processes for Finance

Part of the book series: Bocconi & Springer Series ((BS,volume 12))

  • 749 Accesses

Abstract

The previous chapters provide empirical evidence that models with stochastic volatility outperform their deterministic counterpart. In Chap. 1, the multifractal process competes with GARCH models, whereas the Heston model of Chap. 3 achieves a better likelihood than the Black and Scholes model. On the other hand, models based on fractional Brownian motion (fBm) have emerged in recent years. For instance, in the rough Heston model, the volatility is mean reverting and ruled by an fBm. This model belongs to the class of Volterra processes that are introduced in Chap. 9. Fractional Brownian motion is also a particular type of Gaussian field. These Gaussian fields are developed in Chap. 7. This motivates us to review the main properties of fBm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Notice that Bochner’s theorem is also used in Chap. 5 to define memory kernels of self-excited processes and in Chap. 7 to construct covariance functions of Gaussian fields.

References

  1. Biagini, F., Hu, Y., Yaozhong, H., Oksendal, B., Zhang, T.: Stochastic Calculus for Fractional Brownian Motion and Applications. Springer, Berlin (2010)

    MATH  Google Scholar 

  2. Biagini, F., Fink, H., Klüppelberg, C.: A fractional credit model with long range dependent default rate. Stoch. Process. Appl. 123, 1319–1347 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bjork, T., Hult, H.: A note on Wick products and the fractional Black–Scholes model. Financ. Stoch. 9(2), 197–209 (2005)

    Article  MathSciNet  Google Scholar 

  4. Cheridito, P.: Arbitrage in fractional Brownian motion models. Financ. Stoch. 7, 533–553 (2003)

    Article  MathSciNet  Google Scholar 

  5. Dai, W., Heyde, C.C.: Itô’s formula with respect to fractional Brownian motion and its application. J. Appl. Math. Stoch. Analy. 9(4), 439–448 (1996)

    Article  MathSciNet  Google Scholar 

  6. Duncan, T.E., Hu, Y., Pasik-Duncan, B.: Stochastic calculus for fractional Brownian motion I, Theory. SIAM J. Control Optimiz. 38, 582–612 (2000)

    Article  MathSciNet  Google Scholar 

  7. Fink, H., Klüppelberg, C., Zähle, M.: Conditional distributions of processes related to fractional Brownian motion. J. Appl. Probab. 50, 166–183 (2013)

    Article  MathSciNet  Google Scholar 

  8. Gripenberg, G., Norros, I.: On the prediction of fractional Brownian motion. J. Appl. Probab. 33, 400–410 (1996)

    Article  MathSciNet  Google Scholar 

  9. Hu, Y., Oksendal, B.: Fractional white noise calculus and applications to finance. Infin. Dimens. Analy. Quantum Probab. Relat. Top. 6(1), 1–32 (2003)

    Article  MathSciNet  Google Scholar 

  10. Kolmogorov, A.: Wienersche Spiralen und einige andere interessante kurven im Hilbertschen raum. C. R. (Doklady) Acad. Sci. URSS (N.S.) 26, 115–118 (1940)

    Google Scholar 

  11. Mandelbrot, B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968)

    Article  MathSciNet  Google Scholar 

  12. Mandelbrot, B.B., Wallis, J.R.: Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence. Water Resour. Res. 5(5), 967–988 (1969)

    Article  Google Scholar 

  13. Nualart, D.: Stochastic calculus with respect to fractional Brownian motion. Annales de la Faculté des sciences de Toulouse : Mathématiques Série 15(1), 63–78 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Peters, E.E.: Fractal Market Analysis. Wiley, New York (994)

    Google Scholar 

  15. Pipiras, V., Taqqu, M.S.: Are classes of deterministic integrands for fractional Brownian motion on an interval complete? Bernoulli 7(6), 873–897 (2001)

    Article  MathSciNet  Google Scholar 

  16. Rogers, L.C.G.: Arbitrage from fractional Brownian motion. Math. Financ. 7, 95–105 (1997)

    Article  Google Scholar 

  17. Rostek, S.: Option Pricing in Fractional Brownian Markets. Lecture Notes in Economics and Mathematical Systems. Springer, Berlin (2009)

    Google Scholar 

  18. Rostek, S., Schöbel, R.: A note on the use of fractional Brownian motion for financial modeling. Econ. Model. 30, 30–35 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hainaut, D. (2022). Fractional Brownian Motion. In: Continuous Time Processes for Finance. Bocconi & Springer Series, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-031-06361-9_6

Download citation

Publish with us

Policies and ethics