Skip to main content

Biomechanical Basics

  • Chapter
  • First Online:
The Dortmund Lumbar Load Atlas
  • 166 Accesses

Abstract

Biomechanical basics are explained such as anatomical designations, modelling principles for estimating lumbar-load indicators and typical examples of predicted lumbar load. Results for various characteristics, different intervertebral discs, anthropometries, postures and working techniques are depicted. This chapter presents the main part of the underlying methodology for lumbar-load prediction and illustrates, in particular, the main features of the 3D dynamic simulation tool The Dortmunder, which has been applied to numerous manual material handling scenarios and was continually improved over the course of about thirty years of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson GBJ, Örtengren R, Nachemson A (1977) Intradiskal pressure, intra-abdominal pressure and myoelectric back muscle activity related to posture and loading. Clin Orthop Rel Res 129:156–164

    Article  Google Scholar 

  • Bakke S (1931) X-ray study on spinal motion [in German, Röntgenologische Beobachtung über die Bewegungen der Wirbelsäule]. Acta Radiol, Suppl. 13

    Google Scholar 

  • Basmajian JV, De Luca CJ (1985) Muscles alive—their functions revealed by electromyography. William & Wilkins, Baltimore

    Google Scholar 

  • Benninghoff A, Goerttler K (1980) Textbook of human anatomy, vol 1: general anatomy, cytology and musculoskeletal system (13th edn) [in German: Lehrbuch der Anatomie des Menschen, Bd 1: Allgemeine Anatomie, Cytologie und Bewegungsapparat 13. Aufl] Urban & Schwarzenberg, München, Germany

    Google Scholar 

  • Bradford FK, Spurling RG (1945) The intervertebral disc. Charles C Thomas, Springfield

    Google Scholar 

  • Chaffin DB (1969) A computerized biomechanical model—development of and use in gross body actions. J Biomech 2:429–441

    Article  Google Scholar 

  • Chaffin DB, Andersson GBJ, Martin BJ (2006) Occupational biomechanics, 4th edn. Wiley, New York

    Google Scholar 

  • Dempster WT (1955) Space requirements of the seated operator. Wright Air Development Center, Ohio, WADC Tech Rep, No. 55–159

    Google Scholar 

  • DGUV (2020) MEGAPHYS—multilevel hazard analysis of physical exposures at work, vol 2. German social accident insurance (ed) [in German: MEGAPHYS – Mehrstufige Gefährdungsanalyse physischer Belastungen am Arbeitsplatz, Band 2. Deutsche Gesetzliche Unfallversicherung DGUV (Hrsg)]. Berlin, Germany

    Google Scholar 

  • Dolan P, Adams MA (1997) Relationships between EMG and spinal load. In: Seppälä P, Luopajärvi T, Nygård C-H, Mattila M (eds) From experience to innovation—proceedings of 13th triennial congress international ergonomics association, vol 4, pp 150–152. Finnish Inst Occup Health, Helsinki, Finland

    Google Scholar 

  • Dolan P, de Looze MP, Kingma I, van Dieën JH, Toussaint HM, Baten CTM, Adams MA (1998) Can compressive loading of the lumbar spine during dynamic tasks be measured reliably using EMG-based techniques. In: Hermens HJ, Rau G, Disselhorst-Klug C, Freriks B (eds) Surface electromyography application areas and parameters—proceedings of 3rd general SENIAM workshop, pp 151–155. Aachen, Germany

    Google Scholar 

  • Drillis R, Contini R (1966) Body segment parameters. Office of vocational rehabilitation, Dept Health Educ Welfare, Report No. 1163–03. New York NY, USA

    Google Scholar 

  • Easterby R, Kroemer KHE, Chaffin DB (1982) Anthropometry and biomechanics: theory and application. Plenum Publ Corp, New York NY, USA

    Book  Google Scholar 

  • Ellegast RP, Hermanns I, Schiefer C (2009) Workload assessment in field using the ambulatory CUELA system. In: Duffy VG (ed) Second international conference on digital human modeling ICDHM, Part of HCI human computer interaction, San Diego CA, USA. Springer, Berlin, pp 221–226

    Google Scholar 

  • Farfan HF, Cossette JW, Robertson GH, Wells RV, Kraus H (1970) The effects of torsion on the lumbar intervertebral joints: the role of torsion in the production of degeneration. J Bone Joint Surg (AM) 52A:468–497

    Article  Google Scholar 

  • Farfan HF (1973) Mechanical disorders of the low back. Lea and Febiger, Philadelphia PA

    Google Scholar 

  • Floyd WF, Silver PHS (1955) The function of the erector spinae muscles in certain movements and posture in man. J Physiol 129:184–203

    Article  Google Scholar 

  • Frankel VH, Nordin M (1980) Basic biomechanics of the skeletal system. Lea & Febiger, Philadelphia PA, USA

    Google Scholar 

  • Fritz M (1979) Calculation of the bearing forces and the muscle forces of the human being in planar movements based on cinematographical images [in German: Berechnung der Auflagerkräfte und der Muskelkräfte des Menschen bei ebenen Bewegungen aufgrund von kinematographischen Aufnahmen]. PhD Thesis, Institute of Mechanics, Ruhr-Univ Bochum, Germany

    Google Scholar 

  • Gellermann T (1993) Building a measuring station and performing measurements to validate a human biomechanical model to determine the load on the spine. Student thesis [in German: Aufbau eines Meßplatzes und Durchführung von Messungen zur Validierung eines biomechanischen Modells des Menschen zur Bestimmung der Belastung der Wirbelsäule. Studienarbeit]. IfADo, Dortmund, Germany

    Google Scholar 

  • Granata KP, Marras WS (1993) An EMG-assisted model of loads on the lumbar spine during asymmetric trunk extensions. J Biomech 26:1429–1438

    Article  Google Scholar 

  • Granata KP, Marras WS (1995) An EMG-assisted model of trunk loading during free-dynamic lifting. J Biomech 28:1309–1317

    Article  Google Scholar 

  • Hwang J, Knapik GG, Dufour JS, Best TM, Khan SN, Mendel E, Marras WS (2017a) Validation of a personalized curved muscle model of the lumbar spine during complex dynamic exertions. J Electromyogr Kinesiol 33:1–9

    Article  Google Scholar 

  • Hwang J, Knapik GG, Dufour JS, Marras WS (2017b) Curved muscles in biomechanical models of the spine: a systematic literature review. Ergonomics 60:577–588

    Article  Google Scholar 

  • Jäger M (1986) Biomechanical model of the human body for the analysis and assessment of the load on the spine when handling loads [in German: Biomechanisches Modell des Menschen zur Analyse und Beurteilung der Belastung der Wirbelsäule bei der Handhabung von Lasten]. PhD Thesis, Faculty of Mechanical Engineering, Univ Dortmund, Germany. Printed 1987: Fortschritt-Berichte VDI, Reihe 17, Nr. 33. VDI-Verlag, Düsseldorf, Germany

    Google Scholar 

  • Jäger M (2000) Load on and load-bearing capacity of the lumbar spine in everyday working life—an interdisciplinary approach for ergonomic work design [in German: Belastung und Belastbarkeit der Lendenwirbelsäule im Berufsalltag – ein interdisziplinärer Ansatz für eine ergonomische Arbeitsgestaltung]. Habil Thesis, Faculty of Mechanical Engineering, Univ Dortmund, Germany. Printed 2001: Fortschritt-Berichte VDI, Reihe 17, Nr. 208. VDI-Verlag, Düsseldorf, Germany

    Google Scholar 

  • Jäger M, Jordan C (2020) Hazard assessment regarding the musculoskeletal systems—enhancing and evaluating methods and tools for analysing the risks of physical exposures in terms of the biomechanical impacts on the musculoskeletal systems and, in particular, the spine (part C). In: MEGAPHYS—multilevel hazard analysis of physical exposures at work, vol 2. German social accident insurance (ed). [in German: Gefährdungsbeurteilung Muskel-Skelett-System – Weiterentwicklung und Evaluierung von Methoden und Werkzeugen zur Gefährdungsanalyse bei physischen Belastungen hinsichtlich der biomechanischen Auswirkungen auf das Muskel-Skelett-System und insbesondere die Wirbelsäule” (Teil C). In: MEGAPHYS – Mehrstufige Gefährdungsanalyse physischer Belastungen am Arbeitsplatz, Band 2. Deutsche Gesetzliche Unfallversicherung DGUV (Hrsg)]. Berlin, Germany

    Google Scholar 

  • Jäger M, Luttmann A (1987) Determination of spinal stress by biomechanical model calculations and comparison with spinal mechanical strength. In: Bergmann G, Kölbel R, Rohlmann A (eds) Development in biomechanics. Martinus Nijhoff Publishers, Dordrecht, pp 473–478

    Google Scholar 

  • Jäger M, Luttmann A (1989) Biomechanical analysis and assessment of lumbar stress during load lifting using a dynamic 19-segment biomechanical human model. Ergonomics 32:93–112

    Article  Google Scholar 

  • Jäger M, Luttmann A (1992) The load on the lumbar spine during asymmetrical bi-manual materials handling. Ergonomics 35:783–805

    Article  Google Scholar 

  • Jäger M, Luttmann A (1994) Biomechanical assessment of the load on the spine while handling load weights [in German: Biomechanische Beurteilung der Belastung der Wirbelsäule beim Handhaben von Lasten]. Med Sach 90:160–164

    Google Scholar 

  • Jäger M, Luttmann A (1995) Potentials of biomechanical model calculation and assessment of spinal loads at manual materials handling. In: Pangert R (ed) Lifting and carrying loads—improved worker protection through implementing the European Directive 90/269/EWG, pp 15–30. State Office for Social Affairs and Family, Suhl (Germany) and The Thuringian Ministry of Social Affairs and Health, Erfurt, Germany (Publ) [in German: Möglichkeiten der biomechanischen Modellrechnung und Beurteilung von Wirbelsäulenbelastungen bei Lastenmanipulationen. In: Pangert R (Red) Heben und Tragen von Lasten – Verbesserter Arbeitnehmerschutz durch Umsetzung der Europa-Richtlinie 90/269/EWG. Landesamt für Soziales und Familie, Suhl, und Thüringer Ministerium für Soziales und Gesundheit, Erfurt (Hrsg)], pp 15–30. Suhl, Erfurt, Germany

    Google Scholar 

  • Jäger M, Luttmann A (1998) Distribution pattern of compressive and shear forces on the lumbar motion segments during movement and loading. In: Kügelgen B, Böhm B, Schröter F (eds) Neuroorthopaedics 7—Lumbar disc disease—Surgical indication of occupational diseases 2108-2110 [in German: Verteilungsmuster der Kompressions- und Scherkräfte an den lumbalen Bewegungssegmenten unter Bewegung und Belastung. In: Kügelgen B, Böhm B, Schröter F (Hrsg) Neuroorthopädie 7 – Lumbale Bandscheibenkrankheit – Operationsindikation Berufskrankheiten 2108–2110], pp 188–206. Zuckschwerdt, München, Germany

    Google Scholar 

  • Jäger M, Luttmann A (2005) The “Dortmund Approach” for the biomechanical analysis of spinal load during manual materials handling [in German: Der “Dortmunder Denkansatz” zur biomechanischen Analyse der Wirbelsäulenbelastung bei Lastenhandhabungen]. Z Arbeitswiss 59:249–261

    Google Scholar 

  • Jäger M, Luttmann A, Laurig W, Puhlvers E (1983) Back muscle activity and spinal stress. In: del Pozo F, Hernández C, Fernández G (eds) Actas del II Simposium de Ingenieria Biomedica, Madrid. Ciudad Universitaria, Madrid, Spain, pp 51–56

    Google Scholar 

  • Jäger M, Luttmann A, Laurig W (1989) Biomechanics of load manipulation. In: Konietzko H, Dupuis H (eds) Handbook of Occupational medicine—occupational physiology, occupational pathology, prevention [in German: Biomechanik der Lastenmanipulation. In: Konietzko H, Dupuis H (Hrsg) Handbuch der Arbeitsmedizin – Arbeitsphysiologie, Arbeitspathologie, Prävention]. Chapter V-1.1.2.3, pp 1–16. ecomed Verlagsgesellschaft, Landsberg, Germany

    Google Scholar 

  • Jäger M, Luttmann A, Laurig W (1991) Lumbar load during one-handed bricklaying. Int J Indust Ergon 8:261–277

    Article  Google Scholar 

  • Jäger M, Luttmann A, Göllner R, Laurig W (2000) The Dortmunder: Biomechanical modelling to determine and assess the load on the lumbar spine when handling loads. In: Radandt S, Grieshaber R, Schneider W (eds) Prevention of work-related health hazards and diseases—6th Erfurt Days [in German: Der Dortmunder: Biomechanische Modellbildung zur Bestimmung und Beurteilung der Belastung der Lendenwirbelsäule bei Lastenhandhabungen. In: Radandt S, Grieshaber R, Schneider W (Hrsg) Prävention von arbeitsbedingten Gesundheitsgefahren und Erkrankungen – 6. Erfurter Tage], pp 105–124. Monade, Leipzig, Germany

    Google Scholar 

  • Jäger M, Luttmann A, Göllner R, Laurig W (2001) The Dortmunder—biomechanical model for quantification and assessment of the load on the lumbar spine. SAE Trans 110:2163–2171

    Google Scholar 

  • Jürgens HW (1981) Anthropometric bases of work design. In: Schmidtke H (ed) Textbook of ergonomics, 2nd edn. [in German: Anthropometrische Grundlagen der Arbeitsgestaltung. In: Schmidtke H (Ed) Lehrbuch der Ergonomie (2. Aufl)], pp 377–386. Hanser, München, Germany

    Google Scholar 

  • Kendall FP, Kendall McCreary E (1988) Muscles—functions and test, 2nd edn. [in German: Muskeln – Funktionen und Test (2. Aufl)]. Gustav Fischer, Stuttgart, Germany

    Google Scholar 

  • Kromodihardjo S, Mital A (1986) Kinetic analysis of manual lifting activities. Part I: development of a three-dimensional computer model. Int J Indust Ergon 1:77–90

    Article  Google Scholar 

  • Kumar S (1999) Biomechanics in Ergonomics. Taylor and Francis, London

    Article  Google Scholar 

  • Kummer B (1985) General joint theory, arthrology. In: Staubesand J (ed) Benninghoff—anatomy; macroscopic and microscopic anatomy of humans, 1st vol: cytology, histology, general anatomy and anatomy of the musculoskeletal system, 14th edn. [in German: Allgemeine Gelenklehre, Arthrologie. In: Staubesand J (Hrsg) Benninghoff – Anatomie; Makroskopische und mikroskopische Anatomie des Menschen, 1. Band: Cytologie, Histologie, allgemeine Anatomie und Anatomie des Bewegungsapparates (14. Aufl)], pp 221–236. Urban and Schwarzenberg, München, Germany

    Google Scholar 

  • Lanier RR (1939) The presacral vertebrae of American white and negro males. Am J Phys Anthropol 25:341–420

    Article  Google Scholar 

  • von Lanz T, Wachsmuth W (1972) Practical anatomy. Part 4: leg and statics [in German: Praktische Anatomie. Teil 4: Bein und Statik]. Springer, Berlin

    Google Scholar 

  • Laurig W (1967) Electromyography as an occupational physiological examination method of fatigue in static arm work [in German: Elektromyographie als arbeitsphysiologische Untersuchungsmethode der Ermüdung bei statischer Armarbeit]. Schriftenreihe Arbeitsmed Sozialmed Arbeitshyg 16:134–140

    Google Scholar 

  • Laurig W (1970) Electromyography as a work science examination method for assessing static muscular work [in German: Elektromyographie als arbeitswissenschaftliche Untersuchungsmethode zur Beurteilung von statischer Muskelarbeit]. Beuth, Berlin, Germany

    Google Scholar 

  • Lippold OCJ (1967) Electromyography. In: Venables PH, Martin I (eds) Manual of psychophysiological methods. Wiley, New York, pp 247–297

    Google Scholar 

  • Luttmann A (1996) Physiological basis and concepts of electromyography. In: Kumar S, Mital A (eds) Electromyography in ergonomics. Taylor and Francis, London, pp 51–95

    Google Scholar 

  • Luttmann A, Jäger M, Laurig W (1991) Task analysis and electromyography for bricklaying at different wall heights. Int J Indust Ergon 8:247–260

    Article  Google Scholar 

  • Marras WS, Sommerich CM (1991) A three-dimensional motion model of loads on the lumbar spine. I. Model Structure. Hum Factors 33:123–137

    Article  Google Scholar 

  • McGill SM (1992) A myoelectrically based dynamic three-dimensional model to predict loads on lumbar spine tissues during lateral bending. J Biomech 25:395–414

    Article  Google Scholar 

  • McGill SM, Norman RW (1986) Partitioning of the L4-L5 dynamic moment into disc, ligamentous, and muscular components during lifting. Spine 11:666–678

    Article  Google Scholar 

  • McGill SM, Norman RW (1987) Reassessment of the role of intra-abdominal pressure in spinal compression. Ergonomics 30:1165–1188

    Article  Google Scholar 

  • McGill SM, Sharratt M (1991) Relationship between intra-abdominal pressure and trunk EMG. Clin Biomech 5:59–67

    Article  Google Scholar 

  • Merletti R, Parker PA (2004) Electromyography: physiology, engineering, and noninvasive applications. Wiley, New York

    Book  Google Scholar 

  • Morlock MM (1999) The link between workplace exposure and back pain—a multifactorial approach to the nursing profession. Reports from the field of biomechanics [in German: Der Zusammenhang zwischen der Belastung am Arbeitsplatz und Rückenschmerzen – ein multifaktorieller Ansatz für den Pflegeberuf. Berichte aus der Biomechanik]. Shaker, Aachen, Germany

    Google Scholar 

  • Morris JM, Lucas DB, Bresler B (1961) Role of the trunk in stability of the spine. J Bone Joint Surg 43A:327–351

    Article  Google Scholar 

  • Nachemson A (1966) The load on the lumbar disks in different positions of the body. Clin Orthop 45:107–122

    Article  Google Scholar 

  • Nachemson A, Elfström G (1970) Intravital dynamic pressure measurements in lumbar discs. Scand J Rehab Med, Suppl 1

    Google Scholar 

  • Nachemson A, Morris JM (1964) In vivo measurements of intradiscal pressure. J Bone Joint Surg 46A:1077–1092

    Article  Google Scholar 

  • Orne D, Liu YK (1971) A mathematical model of spinal response to impact. J Biomech 4:49–71

    Article  Google Scholar 

  • Panjabi MM, White III AA (1990) Physical properties and functional biomechanics of the spine. In: White III AA, Panjabi MM (eds) Clinical biomechanics of the spine, 2nd edn, pp 1–83. Lippincott, Philadelphia

    Google Scholar 

  • Perey O (1957) Fracture of the vertebral end-plate in the lumbar spine. An experimental biomechanical investigation. Acta Orthop Scand Suppl 25

    Google Scholar 

  • Plagenhoef S (1971) Patterns of human motion: a cinematographic analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Sato K, Kikuchi S, Yonezawa T (1999) In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine 24:2468–2474

    Article  Google Scholar 

  • Schiefer C, Ellegast R, Hermanns I, Derakshani M, Göbel F, Jäger M, Koch U, Reichert T, Ditchen D (2020) Physical loads on rescue workers during patient transport in stairwells. In: 7th ergonomics symposium 2019, German social accident insurance (ed) [in German: Physische Belastungen von Rettungskräften beim Patiententransport in Treppenhäusern. In: 7. Fachgespräch Ergonomie 2019, Deutsche Gesetzliche Unfallversicherung eV (Hrsg)]. DGUV-Report 2/2020, pp 13–18. DGUV, Berlin, Germany

    Google Scholar 

  • Schultz A, Haderspeck K, Warwick D, Portillo D (1983) Use of lumbar trunk muscles in isometric performance of mechanically complex standing tasks. J Orthop Res 1:77–91

    Article  Google Scholar 

  • Slote L, Stone G (1963) Biomechanical power generated by forearm flexion. Hum Factors 5:443–452

    Article  Google Scholar 

  • Steinhilber B, Anders C, Jäger M, Läubli T, Luttmann A, Rieger MA, Scholle H-C, Schumann N-P, Seibt R, Strasser H, Kluth K (2013) Surface electromyography in occupational medicine, occupational physiology and work science. Association of the scientific medical specialist societies [in German: Oberflächen-Elektromyographie in der Arbeitsmedizin, Arbeitsphysiologie und Arbeitswissenschaft. Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften AWMF]. AWMF-Register 002/016. Z Arbeitswiss 67:113–126

    Google Scholar 

  • Tillmann B, Töndury G (1987) Rauber/Kopsch—human anatomy, vol 1: musculoskeletal system [in German: Rauber/Kopsch – Anatomie des Menschen, Bd 1: Bewegungsapparat]. Georg Thieme, Stuttgart, Germany

    Google Scholar 

  • Toldt CF (1931) Anatomical atlas, vol 1: the regions of the human body, the skeletal system, the muscular system, 15th edn. [in German: Anatomischer Atlas, Bd 1: Die Gegenden des menschlichen Körpers, das Skelettsystem, das Muskelsystem (15. Aufl)] Urban and Schwarzenberg, Berlin

    Google Scholar 

  • University of Michigan (1989) 2D static strength prediction program. The Regents of the University of Michigan, Ann Arbor MI, USA

    Google Scholar 

  • University of Michigan (2020) 3D static strength prediction program. Center for Ergonomics, the University of Michigan, Ann Arbor MI, USA

    Google Scholar 

  • van Dieën JH (1998) Preliminary validation of a model to estimate tissue loads in the lumbosacral spine. In: Kumar S (ed) Advances in occupational ergonomics and safety. IOS Press, Amsterdam, The Netherlands, pp 275–278

    Google Scholar 

  • White AA, Panjabi MM (1978) Clinical biomechanics of the spine. Lippincott, Philadelphia PA, USA

    Google Scholar 

  • White AA III, Panjabi MM (1990) Clinical biomechanics of the spine, 2nd edn. Lippincott, Philadelphia

    Google Scholar 

  • Wilke H-J, Neef P, Caimi M, Hoogland T, Claes LE (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 24:755–762

    Article  Google Scholar 

  • Wolter D, Seide K, Schmidt HGK, Feeser R, Willy C (1998) Function and influence of the ”soft tissue column“ on the load on the spine. In: Wolter D, Seide K (eds) Work-related diseases of the lumbar spine [in German: Funktion und Einfluß der „Weichteilsäule“ auf die Belastung der Wirbelsäule. In: Wolter D, Seide K (Hrsg) Berufsbedingte Erkrankungen der Lendenwirbelsäule], pp 90–103. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Jäger .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jäger, M. (2023). Biomechanical Basics. In: The Dortmund Lumbar Load Atlas. Springer, Cham. https://doi.org/10.1007/978-3-031-06349-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06349-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06348-0

  • Online ISBN: 978-3-031-06349-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics