Skip to main content

Brain Shape Correspondence Analysis Using Variational Mixtures for Gaussian Process Latent Variable Models

  • Conference paper
  • First Online:
Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications (IWINAC 2022)

Abstract

Analyzing brain structures in the medical imaging field poses challenging problems due to neurological diseases’ heterogeneity. Besides, measuring brain changes quantitatively in neurodevelopmental is crucial to evaluate clinical outcomes correctly. From a computer-vision perspective, establishing correspondences between shapes often requires computing similarity measures that, in most cases, are unavailable. This paper proposes an unsupervised probabilistic framework for shape correspondence analysis on brain structures by using variational unsupervised learning. The probabilistic framework comprehensively captures the form of brain shapes from surface descriptors. Then, we learned clustered latent space representations of surface descriptors by using mixtures distributions for Gaussian process latent variable models to avoid computing similarity measures, which classify the resulting latent vectors to establish group-wise correspondences. The experimental results show how the proposed model captures non-linearities in non-rigid 3D shapes even when they present occlusion or partialities. These results demonstrated that the proposed model is suitable for shape correspondence analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Real correspondence label in both shapes.

  2. 2.

    Different levels of geodesic error in which it is evaluated what percentage of matches are located on it.

References

  1. Aflalo, Y., Dubrovina, A., Kimmel., R.: Spectral generalized multidimensional scaling. Int. J. Comput. Vis. 118(3), 380–392 (2016)

    Google Scholar 

  2. Boscaini, D., Masci, J., Rodolá, E., Bronstein, M.M.: Learning shape correspondence with anisotropic convolutional neural networks. arXiv, Cornell University (2016)

    Google Scholar 

  3. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Calculus of nonrigid surfaces for geometry and texture manipulation. IEEE Trans. Vis. Comput. Graph 13(5), 902–913 (2007)

    Google Scholar 

  4. Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: Proceedings of CVPR, pp. 1704–1711 (2010)

    Google Scholar 

  5. Chouvatut, V., Boonchieng, E.: Brain tumor’s approximate correspondence and area with interior holes filled. In: 2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE), pp. 1–5 (2017)

    Google Scholar 

  6. Cosmo, L., Rodolá, E., Bronstein, M.M., Torsello, A., Cremers, D., Sahillioglu, Y.: Shrec’16: Partial matching of deformable shapes. In: Eurographics Workshop on 3D Object Retrieval (2016)

    Google Scholar 

  7. Damianou, A.C., Titsias, M.K., Lawrence, N.D.: Variational inference for latent variables and uncertain inputs in gaussian processes. J. Mach. Learn. Res. (2016)

    Google Scholar 

  8. Gousias, I.S., et al.: Magnetic resonance imaging of the newborn brain: manual segmentation of labelled atlases in term-born and preterm infants. NeuroImage 62(3), 1499–1509 (2012)

    Google Scholar 

  9. Katayama, Y., Oshima, H., Kano, T., Kobayashi, K., Fukaya, C., Yamamoto, T.: Direct effect of subthalamic nucleus stimulation on levodopa-induced peak-dose dyskinesia in patients with parkinson’s disease. Stereotact. Funct. Neurosurg. 84, 176–179 (2006)

    Google Scholar 

  10. Kezurer, I., Kovalsky, S.Z., Basri, R., Lipman, Y.: Tight relaxation of quadratic matching. In: Computer Graphics Forum, vol. 34(5), 115–128 (2015)

    Google Scholar 

  11. Kim, V.G., Lipman, Y., Funkhouser, T.A.: Blended intrinsic maps. TOG 30(4), 1–12 (2011)

    Google Scholar 

  12. Lahner, Z., et al.: Efficient deformable shape correspondence via kernel matching. arXiv, Cornell University (2017)

    Google Scholar 

  13. Legaz-Aparicio, A.-G., et al.: Efficient variational approach to multimodal registration of anatomical and functional intra-patient tumorous brain data. Int. J. Neural Syst. 27(6), 1750014 (2017)

    Google Scholar 

  14. Liang, L., Szymczak, A., Mingqiang, W.: Geodesic spin contour for partial near-isometric matching. Comput. Graph. 146, 156–171 (2015)

    Google Scholar 

  15. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas., L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31(4), 1–11 (2012)

    Google Scholar 

  16. Rodolá, E., Buló, S.R., Windheuser, T., Vestner, M., Cremers., D.: Dense non-rigid shape correspondence using random forests. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, pp. 4177–4184 (2014)

    Google Scholar 

  17. Talo, M., Yildirim, O., Baloglu, U.B., Aydin, G., Acharya, U.R.: Convolutional neural networks for multi-class brain disease detection using MRI images. Comput. Med. Imaging Graph. 78, 101673 (2019)

    Google Scholar 

  18. Vestner, M., et al.: Efficient deformable shape correspondence via kernel matching. In: 2017 International Conference on 3D Vision (3DV), pp. 517–526 (2017)

    Google Scholar 

  19. Sahillioglu, Y., Yemez, Y.: Coarse-to-fine combinatorial matching for dense isometric shape correspondence. Comput. Graph. Forum 30(5), 1461–1470 (2011)

    Google Scholar 

Download references

Acknowledgements

This research was developed under the project: “DESARROLLO DE UN SISTEMA AUTOMÁTICO DE ANÁLISIS DE VOLUMETRÍA CEREBRAL COMO APOYO EN LA EVALUACIÓN CLÍNICA DE RECIÉN NACIDOS CON ASFIXIA PERINATAL” financed by MINCIENCIAS with code COL497984467090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan P. V. Minoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Minoli, J.P.V., Orozco, Á.A., Porras-Hurtado, G.L., García, H.F. (2022). Brain Shape Correspondence Analysis Using Variational Mixtures for Gaussian Process Latent Variable Models. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications. IWINAC 2022. Lecture Notes in Computer Science, vol 13258. Springer, Cham. https://doi.org/10.1007/978-3-031-06242-1_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06242-1_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06241-4

  • Online ISBN: 978-3-031-06242-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics