Amini, S., et al.: An artificial intelligence-assisted method for dementia detection using images from the clock drawing test. J. Alzheimer’s Dis. 83(2), 581–589 (2021). https://doi.org/10.3233/JAD-210299
CrossRef
Google Scholar
Binaco, R., et al.: Machine learning analysis of digital clock drawing test performance for differential classification of mild cognitive impairment subtypes versus Alzheimer’s disease. J. Int. Neuropsychol. Soc. 26(7), 690–700 (2020). https://doi.org/10.1017/s1355617720000144
CrossRef
PubMed
Google Scholar
Chan, J.Y.C., et al.: Evaluation of digital drawing tests and paper-and-pencil drawing tests for the screening of mild cognitive impairment and dementia: a systematic review and meta-analysis of diagnostic studies. Neuropsychol. Rev. 1–11 (2021). https://doi.org/10.1007/s11065-021-09523-2
Chen, S., Stromer, D., Alabdalrahim, H.A., Schwab, S., Weih, M., Maier, A.: Automatic dementia screening and scoring by applying deep learning on clock-drawing tests. Sci. Rep. 10(1), 1–11 (2020). https://doi.org/10.1038/s41598-020-74710-9
CAS
CrossRef
Google Scholar
Davoudi, A., et al.: Classifying non-dementia and Alzheimer’s disease/vascular dementia patients using kinematic, time-based, and visuospatial parameters: the digital clock drawing test. J. Alzheimer’s Dis. 82(1), 47–57 (2021). https://doi.org/10.3233/JAD-201129
CAS
CrossRef
Google Scholar
Freedman, M., Leach, L., Kaplan, E., Winocur, G., Shulman, K., Delis, D.C.: Clock Drawing: A Neuropsychological Analysis. Oxford University Press, USA (1994)
Google Scholar
Górriz, J.M., et al.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing 410, 237–270 (2020)
CrossRef
Google Scholar
Górriz, J.M., Ramirez, J., Suckling, J.: On the computation of distribution-free performance bounds: application to small sample sizes in neuroimaging. Pattern Recognit. 93, 1–13 (2019). https://doi.org/10.1016/j.patcog.2019.03.032
CrossRef
Google Scholar
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Google Scholar
Jimenez-Mesa, C., et al.: Optimized one vs one approach in multiclass classification for early Alzheimer’s disease and mild cognitive impairment diagnosis. IEEE Access 8, 96981–96993 (2020). https://doi.org/10.1109/access.2020.2997736
CrossRef
Google Scholar
Knopman, D.S., et al.: Alzheimer disease. Nat. Rev. Dis. Primers 7(1), 1–21 (2021). https://doi.org/10.1038/s41572-021-00269-y
CrossRef
Google Scholar
Müller, S., Preische, O., Heymann, P., Elbing, U., Laske, C.: Increased diagnostic accuracy of digital vs. conventional clock drawing test for discrimination of patients in the early course of Alzheimer’s disease from cognitively healthy individuals. Front. Aging Neurosci. 9, 101 (2017). https://doi.org/10.3389/fnagi.2017.00101
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Ortiz, A., Munilla, J., Górriz, J.M., Ramírez, J.: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease. Int. J. Neural Syst. 26(07), 1650025 (2016). https://doi.org/10.1142/s0129065716500258
Palsetia, D., Rao, G.P., Tiwari, S.C., Lodha, P., De Sousa, A.: The clock drawing test versus mini-mental status examination as a screening tool for dementia: a clinical comparison. Ind. J. Psychol. Med. 40(1), 1–10 (2018)
CrossRef
Google Scholar
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)
Google Scholar
Schölkopf, B., Smola, A.J., Bach, F., et al.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)
Google Scholar
Shulman, K.I.: Clock-drawing: is it the ideal cognitive screening test? Int. J. Geriatr. Psychiatry 15(6), 548–561 (2000). https://doi.org/10.1002/1099-1166(200006)15:6<548::aid-gps242>3.0.co;2-u
CAS
CrossRef
PubMed
Google Scholar
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Google Scholar
Vapnik, V., Levin, E., Cun, Y.L.: Measuring the VC-dimension of a learning machine. Neural Comput. 6(5), 851–876 (1994)
CrossRef
Google Scholar
Wold, S., Ruhe, A., Wold, H., W. J. Dunn, I.: The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J. Sci. Stat. Comput. 5(3), 735–743 (1984). https://doi.org/10.1137/0905052