Skip to main content

Automatic Classification System for Diagnosis of Cognitive Impairment Based on the Clock-Drawing Test

  • 498 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13258)

Abstract

The prevalence of dementia is currently increasing worldwide. This syndrome produces a deterioration in cognitive function that can not be reverted. However, an early diagnosis can be crucial for slowing its progress. The Clock Drawing Test (CDT) is a widely used paper-and-pencil test for cognitive assessment in which an individual has to manually draw a clock on a paper during a certain time. Nevertheless, there are a lot of scoring systems for this test and most of them depend on the subjective assessment of the expert. This study proposes a computer-aided diagnosis (CAD) system based on deep learning in order to automate the diagnosis of cognitive impairment (CI) from the result of the CDT. This is addressed by employing a preprocessing pipeline in which the clock is detected and centered, as well as binarized for decreasing the computational burden. Then, the resulting image is fed into a Convolutional Neural Network (CNN), which is used to identify the informative patterns within the CDT drawings that are relevant for the assessment of the patient’s cognitive status. Performance is evaluated in a real context where differentiating between CI patients and controls. The proposed method provides an accuracy of 68.62% in this classification task, with an AUC of 74.53%. A validation method using resubstitution with upper bound correction is also discussed.

Keywords

  • Alzheimer’s disease
  • Clock Drawing Test
  • Cognitive impairment
  • Deep learning
  • Image processing
  • Machine learning

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-06242-1_4
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-06242-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Amini, S., et al.: An artificial intelligence-assisted method for dementia detection using images from the clock drawing test. J. Alzheimer’s Dis. 83(2), 581–589 (2021). https://doi.org/10.3233/JAD-210299

    CrossRef  Google Scholar 

  2. Binaco, R., et al.: Machine learning analysis of digital clock drawing test performance for differential classification of mild cognitive impairment subtypes versus Alzheimer’s disease. J. Int. Neuropsychol. Soc. 26(7), 690–700 (2020). https://doi.org/10.1017/s1355617720000144

    CrossRef  PubMed  Google Scholar 

  3. Chan, J.Y.C., et al.: Evaluation of digital drawing tests and paper-and-pencil drawing tests for the screening of mild cognitive impairment and dementia: a systematic review and meta-analysis of diagnostic studies. Neuropsychol. Rev. 1–11 (2021). https://doi.org/10.1007/s11065-021-09523-2

  4. Chen, S., Stromer, D., Alabdalrahim, H.A., Schwab, S., Weih, M., Maier, A.: Automatic dementia screening and scoring by applying deep learning on clock-drawing tests. Sci. Rep. 10(1), 1–11 (2020). https://doi.org/10.1038/s41598-020-74710-9

    CAS  CrossRef  Google Scholar 

  5. Davoudi, A., et al.: Classifying non-dementia and Alzheimer’s disease/vascular dementia patients using kinematic, time-based, and visuospatial parameters: the digital clock drawing test. J. Alzheimer’s Dis. 82(1), 47–57 (2021). https://doi.org/10.3233/JAD-201129

    CAS  CrossRef  Google Scholar 

  6. Freedman, M., Leach, L., Kaplan, E., Winocur, G., Shulman, K., Delis, D.C.: Clock Drawing: A Neuropsychological Analysis. Oxford University Press, USA (1994)

    Google Scholar 

  7. Górriz, J.M., et al.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing 410, 237–270 (2020)

    CrossRef  Google Scholar 

  8. Górriz, J.M., Ramirez, J., Suckling, J.: On the computation of distribution-free performance bounds: application to small sample sizes in neuroimaging. Pattern Recognit. 93, 1–13 (2019). https://doi.org/10.1016/j.patcog.2019.03.032

    CrossRef  Google Scholar 

  9. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  10. Jimenez-Mesa, C., et al.: Optimized one vs one approach in multiclass classification for early Alzheimer’s disease and mild cognitive impairment diagnosis. IEEE Access 8, 96981–96993 (2020). https://doi.org/10.1109/access.2020.2997736

    CrossRef  Google Scholar 

  11. Knopman, D.S., et al.: Alzheimer disease. Nat. Rev. Dis. Primers 7(1), 1–21 (2021). https://doi.org/10.1038/s41572-021-00269-y

    CrossRef  Google Scholar 

  12. Müller, S., Preische, O., Heymann, P., Elbing, U., Laske, C.: Increased diagnostic accuracy of digital vs. conventional clock drawing test for discrimination of patients in the early course of Alzheimer’s disease from cognitively healthy individuals. Front. Aging Neurosci. 9, 101 (2017). https://doi.org/10.3389/fnagi.2017.00101

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Ortiz, A., Munilla, J., Górriz, J.M., Ramírez, J.: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease. Int. J. Neural Syst. 26(07), 1650025 (2016). https://doi.org/10.1142/s0129065716500258

  14. Palsetia, D., Rao, G.P., Tiwari, S.C., Lodha, P., De Sousa, A.: The clock drawing test versus mini-mental status examination as a screening tool for dementia: a clinical comparison. Ind. J. Psychol. Med. 40(1), 1–10 (2018)

    CrossRef  Google Scholar 

  15. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  16. Schölkopf, B., Smola, A.J., Bach, F., et al.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  17. Shulman, K.I.: Clock-drawing: is it the ideal cognitive screening test? Int. J. Geriatr. Psychiatry 15(6), 548–561 (2000). https://doi.org/10.1002/1099-1166(200006)15:6<548::aid-gps242>3.0.co;2-u

    CAS  CrossRef  PubMed  Google Scholar 

  18. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    Google Scholar 

  19. Vapnik, V., Levin, E., Cun, Y.L.: Measuring the VC-dimension of a learning machine. Neural Comput. 6(5), 851–876 (1994)

    CrossRef  Google Scholar 

  20. Wold, S., Ruhe, A., Wold, H., W. J. Dunn, I.: The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J. Sci. Stat. Comput. 5(3), 735–743 (1984). https://doi.org/10.1137/0905052

Download references

Acknowledgments

This work was supported by the MCIN/ AEI/10.13039/501100011033/ and FEDER “Una manera de hacer Europa” under the RTI2018-098913-B100 project, by the Consejeria de Economia, Innovacion, Ciencia y Empleo (Junta de Andalucia) and FEDER under CV20-45250, A-TIC-080-UGR18, B-TIC-586-UGR20 and P20-00525 projects, and by the Ministerio de Universidades under the FPU18/04902 grant given to C. Jimenez-Mesa and the Margarita-Salas grant to J.E. Arco

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jiménez-Mesa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Jiménez-Mesa, C. et al. (2022). Automatic Classification System for Diagnosis of Cognitive Impairment Based on the Clock-Drawing Test. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications. IWINAC 2022. Lecture Notes in Computer Science, vol 13258. Springer, Cham. https://doi.org/10.1007/978-3-031-06242-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06242-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06241-4

  • Online ISBN: 978-3-031-06242-1

  • eBook Packages: Computer ScienceComputer Science (R0)