Skip to main content

CAD System for Parkinson’s Disease with Penalization of Non-significant or High-Variability Input Data Sources

  • 322 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13258)


In the last decade, the progressive development of new machine learning schemas in combination with novel biomarkers have led us to more accurate models to diagnose and predict the evolution of neurological disorders like Parkinson’s Disease (PD). Though some of these previous work have attempted to combine multiple input data sources, many studies are critical of their lack of robustness when combining several input sources that with a high variability and/or not statistically significant. In order to minimize this problem, we have develop a Computer-Aided-Diagnosis (CAD) system for PD able to combine multiple input data sources underestimating those data types with poor classification rates and high variability. This model has been evaluated using FP-CIT SPECT and MRI images from healthy control subjects and patients with Parkinson’s Disease. As shown by our results, the cross-validation model proposed here does not only preserves the performance of our CAD system (93.8% of balanced accuracy) but also minimizes its variability even despite the input data sources poorly statistically significant.


  • Machine learning
  • Ensemble learning
  • Neuroimaging
  • Parkinson’s disease
  • Multimodal analysis
  • Computer-aided-diagnosis

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-06242-1_3
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-06242-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1.

    Patients with parkinsonism labeled as SWEDD (Scan Without Evidence of Dopaminergic Deficit).

  2. 2.

    Available at:

  3. 3.

    Available at

  4. 4.

    Arithmetic mean between sensitivity and specificity.


  1. Augimeri, A., et al.: CADA—computer-aided DaTSCAN analysis. EJNMMI Phys. 3(1), 1–13 (2016).

    CrossRef  Google Scholar 

  2. Castillo-Barnes, D., et al.: Robust ensemble classification methodology for I123-Ioflupane SPECT images and multiple heterogeneous biomarkers in the diagnosis of Parkinson’s disease. Front. Neuroinform. 12, 53 (2018).

  3. Castillo-Barnes, D., et al.: Comparison between affine and non-affine transformations applied to I\(^{[123]}\)-FP-CIT SPECT images used for Parkinson’s disease diagnosis. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2019, Part I. LNCS, vol. 11486, pp. 379–388. Springer, Cham (2019).

    CrossRef  Google Scholar 

  4. Castillo-Barnes, D., et al.: Morphological characterization of functional brain imaging by isosurface analysis in Parkinson’s disease. Int. J. Neural Syst. 30(09), 2050044 (2020).

  5. Cigdem, O., Beheshti, I., Demirel, H.: Effects of different covariates and contrasts on classification of Parkinson’s disease using structural MRI. Comput. Biol. Med. 99, 173–181 (2018).

    CrossRef  PubMed  Google Scholar 

  6. Górriz, J.M., et al.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing 410, 237–270 (2020).

    CrossRef  Google Scholar 

  7. Hawkins, D.M.: The problem of overfitting. J. Chem. Inf. Comput. Sci. 44(1), 1–12 (2003).

    CAS  CrossRef  Google Scholar 

  8. Hustad, E., Skogholt, A.H., Hveem, K., Aasly, J.O.: The accuracy of the clinical diagnosis of Parkinson disease. The HUNT study. J. Neurol. 265(9), 2120–2124 (2018).

    CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Iarkov, A., Barreto, G.E., Grizzell, J.A., Echeverria, V.: Strategies for the treatment of Parkinson’s disease: beyond dopamine. Front. Aging Neurosci. 12, 4 (2020).

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, IJCAI 1995, Quebec, Canada, vol. 2, pp. 1137–1145 (August 1995)

    Google Scholar 

  11. Martins, R., et al.: Automatic classification of idiopathic Parkinson’s disease and atypical parkinsonian syndromes combining [11c]raclopride PET uptake and MRI grey matter morphometry. J. Neural Eng. 18(4), 046037 (2021).

  12. Nicastro, N., et al.: Classification of degenerative parkinsonism subtypes by support-vector-machine analysis and striatal 123I-FP-CIT indices. J. Neurol. 266(7), 1771–1781 (2019).

    CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Ramírez, J., et al.: Ensemble of random forests one vs. rest classifiers for MCI and AD prediction using ANOVA cortical and subcortical feature selection and partial least squares. J. Neurosci. Methods 302, 47–57 (2018).

    CrossRef  PubMed  Google Scholar 

  14. Rokach, L.: Pattern Classification Using Ensemble Methods. World Scientific Publishing Company, Singapore (2009)

    CrossRef  Google Scholar 

  15. Salas-Gonzalez, D., et al.: Building a FP-CIT SPECT brain template using a posterization approach. Neuroinformatics 13(4), 391–402 (2015).

    CAS  CrossRef  PubMed  Google Scholar 

  16. Salas-Gonzalez, D., et al.: Linear intensity normalization of FP-CIT SPECT brain images using the \(\alpha \)-stable distribution. NeuroImage 65, 449–455 (2013).

    CrossRef  PubMed  Google Scholar 

  17. Salvatore, C., et al.: Machine learning on brain MRI data for differential diagnosis of Parkinson’s disease and progressive supranuclear palsy. J. Neurosci. Methods 222, 230–237 (2014).

    CAS  CrossRef  PubMed  Google Scholar 

  18. Savica, R., et al.: Time trends in the incidence of Parkinson disease. JAMA Neurol. 73(8), 981 (2016).

    CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Schoölkopf, B.: Learning with Kernels - Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  20. Segovia, F., et al.: Multivariate analysis of 18f-DMFP PET data to assist the diagnosis of parkinsonism. Front. Neuroinform. 11, 23 (2017).

    CrossRef  PubMed  PubMed Central  Google Scholar 

  21. Shaw, R.G., Mitchell-Olds, T.: Anova for unbalanced data: an overview. Ecology 74(6), 1638–1645 (1993).

    CrossRef  Google Scholar 

  22. Solana-Lavalle, G., Rosas-Romero, R.: Classification of PPMI MRI scans with voxel-based morphometry and machine learning to assist in the diagnosis of Parkinson’s disease. Comput. Methods Programs Biomed. 198, 105793 (2021).

  23. Vlaar, A.M., et al.: Diagnostic value of 123i-ioflupane and 123i-iodobenzamide SPECT scans in 248 patients with parkinsonian syndromes. Eur. Neurol. 59(5), 258–266 (2008).

    CrossRef  PubMed  Google Scholar 

  24. Wingate, J., Kollia, I., Bidaut, L., Kollias, S.: Unified deep learning approach for prediction of Parkinson’s disease. IET Image Process. 14(10), 1980–1989 (2020).

    CrossRef  Google Scholar 

  25. Wold, S., Ruhe, A., Wold, H., W. J. Dunn, I.: The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J. Sci. Stat. Comput. 5(3), 735–743 (1984).

  26. Zhang, Y.D., et al.: Advances in multimodal data fusion in neuroimaging: overview, challenges, and novel orientation. Inf. Fusion 64, 149–187 (2020).

    CrossRef  PubMed  PubMed Central  Google Scholar 

Download references


This work was supported by the MCIN/ AEI/10.13039/501100011033/ and FEDER “Una manera de hacer Europa”under the RTI2018-098913-B100 project; by the Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía) and FEDER under CV20-45250, A-TIC-080-UGR18, B-TIC-586-UGR20 and P20-00525 projects; and by the Ministerio de Universidades under the FPU18/04902 grant given to C. Jimenez-Mesa and the Margarita-Salas grant to J.E. Arco.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Diego Castillo-Barnes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Castillo-Barnes, D. et al. (2022). CAD System for Parkinson’s Disease with Penalization of Non-significant or High-Variability Input Data Sources. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications. IWINAC 2022. Lecture Notes in Computer Science, vol 13258. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06241-4

  • Online ISBN: 978-3-031-06242-1

  • eBook Packages: Computer ScienceComputer Science (R0)