Skip to main content

Analyzing Statistical Inference Maps Using MRI Images for Parkinson’s Disease

  • 440 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13258)

Abstract

Parkinson’s Disease (PD) is one of the most prevalent and studied types of dementia. Traditionally, studies about this neurological disorder have made use of functional SPECT images. Nevertheless, to avoid some of its disadvantages with special focus on its expensive cost and low resolution, in the last years many studies have tried to use another imaging alternatives such as MRI scans able to evaluate subtle changes in the Grey Matter tissue. When analyzing the state of the art on this subject, we have found several shortcomings in the way of proceeding. Therefore, the work presented here presents a qualitative analysis of the regions of interest (ROIs) when using MRI for PD by the computation of statistical significance maps. For that, we have made use of a parametric and a non-parametric approaches using the widely known Statistical Parametric Mapping (SPM) package and the novel Statistical Agnostic Mapping (SAM) proposal. Results obtained suggest that there are no relevant ROIs in GM MRI imaging contrary to other modalities like the FP-CIT SPECT scans evaluated on the striatum region.

Keywords

  • Statistical Agnostic Mapping
  • Statistical Parametric Mapping
  • Neuroimaging
  • MRI
  • SPECT
  • Parkinson’s Disease

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-06242-1_17
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-06242-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. 1.

    www.fil.ion.ucl.ac.uk/spm/software/spm12/.

References

  1. Bateman, T.: Advantages and disadvantages of PET and SPECT in a busy clinical practice. J. Nucl. Cardiol. 19(S1), 3–11 (2012). https://doi.org/10.1007/s12350-011-9490-9

    CrossRef  Google Scholar 

  2. Cigdem, O., Beheshti, I., Demirel, H.: Effects of different covariates and contrasts on classification of Parkinson’s disease using structural MRI. Comput. Biol. Med. 99, 173–181 (2018). https://doi.org/10.1016/j.compbiomed.2018.05.006

    CrossRef  PubMed  Google Scholar 

  3. Eklund, A., Nichols, T.E., Knutsson, H.: Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl. Acad. Sci. 113(28), 7900–7905 (2016). https://doi.org/10.1073/pnas.1602413113

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Friston, K.: Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier/Academic Press, Amsterdam (2007)

    CrossRef  Google Scholar 

  5. Friston, K.: Sample size and the fallacies of classical inference. Neuroimage 81, 503–504 (2013). https://doi.org/10.1016/j.neuroimage.2013.02.057

    CrossRef  PubMed  Google Scholar 

  6. Friston, K., et al.: Classical and Bayesian inference in neuroimaging: applications. Neuroimage 16(2), 484–512 (2002). https://doi.org/10.1006/nimg.2002.1091

    CAS  CrossRef  PubMed  Google Scholar 

  7. Górriz, J., Ramírez, J., Suckling, J.: On the computation of distribution-free performance bounds: application to small sample sizes in neuroimaging. Pattern Recogn. 93, 1–13 (2019). https://doi.org/10.1016/j.patcog.2019.03.032

    CrossRef  Google Scholar 

  8. Gorriz, J., et al.: A connection between pattern classification by machine learning and statistical inference with the general linear model. IEEE J. Biomed. Health Inform, 1 (2021). https://doi.org/10.1109/jbhi.2021.3101662

  9. Górriz, J., et al.: Statistical agnostic mapping: a framework in neuroimaging based on concentration inequalities. Inf. Fusion 66, 198–212 (2021). https://doi.org/10.1016/j.inffus.2020.09.008

    CrossRef  Google Scholar 

  10. Górriz, J.M., et al.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing 410, 237–270 (2020). https://doi.org/10.1016/j.neucom.2020.05.078

    CrossRef  Google Scholar 

  11. Grabner, G., et al.: Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 58–66. Springer, Heidelberg (2006). https://doi.org/10.1007/11866763_8

    CrossRef  Google Scholar 

  12. Jeong, Y., et al.: 18F-FDG PET findings in frontotemporal dementia: an SPM analysis of 29 patients. J. Nucl. Med. Official Publ. Soc. Nucl. Med. 46, 233–239 (2005)

    Google Scholar 

  13. Kim, I., et al.: Classification accuracy as a proxy for two sample testing. Ann. Stat. 49(1), 411–434 (2021)

    CrossRef  Google Scholar 

  14. Martins, R., et al.: Automatic classification of idiopathic Parkinson’s disease and atypical parkinsonian syndromes combining [11c]raclopride PET uptake and MRI grey matter morphometry. J. Neural Eng. 18(4), 046037 (2021). https://doi.org/10.1088/1741-2552/abf772

    CrossRef  Google Scholar 

  15. Palumbo, B., Bianconi, F., Nuvoli, S., Spanu, A., Fravolini, M.L.: Artificial intelligence techniques support nuclear medicine modalities to improve the diagnosis of Parkinson’s disease and Parkinsonian syndromes. Clin. Transl. Imaging 9(1), 19–35 (2020). https://doi.org/10.1007/s40336-020-00404-x

    CrossRef  Google Scholar 

  16. Pan, P., et al.: Abnormalities of regional brain function in Parkinson’s disease: a meta-analysis of resting state functional magnetic resonance imaging studies. Sci. Rep. 7(1) (2017). https://doi.org/10.1038/srep40469

  17. Poewe, W., et al.: Parkinson’s disease. Nat. Rev. Dis. Primers 3(1) (2017). https://doi.org/10.1038/nrdp.2017.13

  18. Rana, B., et al.: Relevant 3d local binary pattern based features from fused feature descriptor for differential diagnosis of Parkinson’s disease using structural MRI. Biomed. Signal Process. Control 34, 134–143 (2017). https://doi.org/10.1016/j.bspc.2017.01.007

    CrossRef  Google Scholar 

  19. Sakai, K., Yamada, K.: Machine learning studies on major brain diseases: 5-year trends of 2014–2018. Jpn. J. Radiol. 37(1), 34–72 (2018). https://doi.org/10.1007/s11604-018-0794-4

    CrossRef  PubMed  Google Scholar 

  20. Salas-Gonzalez, D., et al.: Linear intensity normalization of FP-CIT SPECT brain images using the \(\alpha \)-stable distribution. Neuroimage 65, 449–455 (2013). https://doi.org/10.1016/j.neuroimage.2012.10.005

    CrossRef  PubMed  Google Scholar 

  21. Salas-Gonzalez, D., et al.: Building a FP-CIT SPECT brain template using a posterization approach. Neuroinformatics 13(4), 391–402 (2015). https://doi.org/10.1007/s12021-015-9262-9

    CAS  CrossRef  PubMed  Google Scholar 

  22. Schoölkopf, B., et al.: Learning With Kernels - Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  23. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002). https://doi.org/10.1006/nimg.2001.0978

    CAS  CrossRef  PubMed  Google Scholar 

  24. Wold, S., Ruhe, A., Wold, H., Dunn, W.: The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J. Sci. Stat. Comput. 5(3), 735–743 (1984). https://doi.org/10.1137/0905052

    CrossRef  Google Scholar 

Download references

Acknowledgments

This work was supported by the MCIN/ AEI/10.13039/501100011033/ and FEDER “Una manera de hacer Europa” under the RTI2018-098913-B100 project; by the Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía) and FEDER under CV20-45250, A-TIC-080-UGR18, B-TIC-586-UGR20 and P20-00525 projects; and by the Ministerio de Universidades under the FPU18/04902 grant given to C. Jimenez-Mesa and the Margarita-Salas grant to J.E. Arco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jimenez-Mesa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Jimenez-Mesa, C., Castillo-Barnes, D., Arco, J.E., Segovia, F., Ramirez, J., Górriz, J.M. (2022). Analyzing Statistical Inference Maps Using MRI Images for Parkinson’s Disease. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications. IWINAC 2022. Lecture Notes in Computer Science, vol 13258. Springer, Cham. https://doi.org/10.1007/978-3-031-06242-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06242-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06241-4

  • Online ISBN: 978-3-031-06242-1

  • eBook Packages: Computer ScienceComputer Science (R0)