Skip to main content

Quantifying Inter-hemispheric Differences in Parkinson’s Disease Using Siamese Networks

  • 317 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13258)

Abstract

Classification of medical imaging is one of the most popular application of intelligent systems. A crucial step is to find the features that are relevant for the subsequent classification. One possibility is to compute features derived from the morphology of the target region in order to check its role in the pathology under study. It is also possible to extract relevant features to evaluate the similarity between different regions, in addition to compute morphology-related measures. However, it can be much more useful to model the differences between regions. In this paper, we propose a method based on the principles of siamese neural networks to extract informative features from differences between two brain regions. The output of this network generates a latent space that characterizes differences between the two hemispheres. This output vector is then fed into a linear SVM classifier. The usefulness of this method has been assessed with images from the Parkinson’s Progression Markers Initiative, demonstrating that differences between the dopaminergic regions of both hemispheres lead to a high performance when classifying controls vs Parkinson’s disease patients.

Keywords

  • Deep learning
  • Siamese network
  • Parkinson’s disease
  • SPECT images

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-06242-1_16
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-06242-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Arco, J.E., Ramírez, J., Górriz, J.M., Ruz, M.: Data fusion based on searchlight analysis for the prediction of Alzheimer’s disease. Expert Syst. Appl. 185, 115549 (2021). https://doi.org/10.1016/j.eswa.2021.115549

  2. Arco, J.E., Ramírez, J., Puntonet, C.G., Górriz, J.M., Ruz, M.: Improving short-term prediction from MCI to AD by applying searchlight analysis. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 10–13 (2016). https://doi.org/10.1109/ISBI.2016.7493199

  3. Baldi, P., Chauvin, Y.: Neural networks for fingerprint recognition. Neural Comput. 5(3), 402–418 (1993). https://doi.org/10.1162/neco.1993.5.3.402

    CrossRef  Google Scholar 

  4. Brahim, A., Ramírez, J., Górriz, J.M., Khedher, L., Salas-Gonzalez, D.: Comparison between different intensity normalization methods in 123i-ioflupane imaging for the automatic detection of parkinsonism. PLOS ONE 10(6), 1–20 (2015). https://doi.org/10.1371/journal.pone.0130274

  5. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a “Siamese” time delay neural network. In: Proceedings of the 6th International Conference on Neural Information Processing Systems, NIPS 1993, pp. 737–744. Morgan Kaufmann Publishers Inc., San Francisco (1993)

    Google Scholar 

  6. Castillo-Barnes, D., Martinez-Murcia, F.J., Ortiz, A., Salas-Gonzalez, D., Ramírez, J., Górriz, J.M.: Morphological characterization of functional brain imaging by isosurface analysis in Parkinson’s disease. Int. J. Neural Syst. 30(09), 2050044 (2020). https://doi.org/10.1142/S0129065720500446

    CrossRef  PubMed  Google Scholar 

  7. Castillo-Barnes, D., Ramírez, J., Segovia, F., Martínez-Murcia, F.J., Salas-Gonzalez, D., Górriz, J.M.: Robust ensemble classification methodology for i123-ioflupane SPECT images and multiple heterogeneous biomarkers in the diagnosis of Parkinson’s disease. Front. Neuroinform. 12, 53 (2018). https://doi.org/10.3389/fninf.2018.00053

  8. Chicco, D.: Siamese neural networks: an overview. Methods Mol. Biol. 2190, 73–94 (2021)

    Google Scholar 

  9. Collazos-Huertas, D., Cárdenas-Peña, D., Castellanos-Dominguez, G.: Instance-based representation using multiple kernel learning for predicting conversion to Alzheimer disease. Int. J. Neural Syst. 29(02), 1850042 (2019). https://doi.org/10.1142/S0129065718500429

  10. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based vector machines. J. Mach. Learn. Res. 2, 265–292 (2002)

    Google Scholar 

  11. Gross, C.C., et al.: Classification of neurological diseases using multi-dimensional CSF analysis. Brain 144(9), 2625–2634 (2021). https://doi.org/10.1093/brain/awab147

  12. Górriz, J.M., et al.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing 410, 237–270 (2020). https://doi.org/10.1016/j.neucom.2020.05.078

  13. Illán, I.Á., Gorrizz, J.M., Ramírez, J., Segovia, F., Jiménez-Hoyuela, J.M., Lozano, S.J.O.: Automatic assistance to Parkinson’s disease diagnosis in DaTSCAN SPECT imaging. Med. Phys. 39(10), 5971–80 (2012)

    Google Scholar 

  14. Koch, G.R.: Siamese neural networks for one-shot image recognition (2015)

    Google Scholar 

  15. Magesh, P., Myloth, R., Tom, R.: An explainable machine learning model for early detection of Parkinson’s disease using lime on DaTSCAN imagery. Comput. Biol. Med. 126, 104041 (2020). https://doi.org/10.1016/j.compbiomed.2020.104041

  16. Mammone, N., et al.: Hierarchical clustering of the electroencephalogram spectral coherence to study the changes in brain connectivity in Alzheimer’s disease. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 1241–1248 (2016). https://doi.org/10.1109/CEC.2016.7743929

  17. Manzanera, O.M., et al.: Scaled subprofile modeling and convolutional neural networks for the identification of Parkinson’s disease in 3d nuclear imaging data. Int. J. Neural Syst. 29(09), 1950010 (2019). https://doi.org/10.1142/S0129065719500102

  18. Marek, K., et al.: The Parkinson progression marker initiative (PPMI). Prog. Neurobiol. 95(4), 629–635 (2011). https://doi.org/10.1016/j.pneurobio.2011.09.005. http://www.sciencedirect.com/science/article/pii/S0301008211001651

  19. Marek, K., et al.: The Parkinson progression marker initiative (PPMI). Prog. Neurobiol. 95(4), 629–635 (2011). https://doi.org/10.1016/j.pneurobio.2011.09.005

  20. Martinez-Murcia, F.J., Górriz, J.M., Ramírez, J., Ortiz, A.: Convolutional neural networks for neuroimaging in Parkinson’s disease: is preprocessing needed? Int. J. Neural Syst. 28(10), 1850035 (2018). https://doi.org/10.1142/S0129065718500351

  21. Martins, R., et al.: Automatic classification of idiopathic Parkinson’s disease and atypical parkinsonian syndromes combining [11C]raclopride PET uptake and MRI grey matter morphometry. J. Neural Eng. 18, 33848996 (2021). https://doi.org/10.1088/1741-2552/abf772

  22. Mazziotta, J.C., et al.: A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM). Philos. Trans. Royal Soc. Lond. Ser. B Biol. Sci. 356 1412, 1293–322 (2001)

    Google Scholar 

  23. Modi, H., Hathaliya, J., Obaidiat, M.S., Gupta, R., Tanwar, S.: Deep learning-based Parkinson disease classification using PET scan imaging data. In: 2021 IEEE 6th International Conference on Computing, Communication and Automation (ICCCA), pp. 837–841 (2021). https://doi.org/10.1109/ICCCA52192.2021.9666251

  24. Ortiz, A., Martínez Murcia, F.J., Munilla, J., Górriz, J.M., Ramírez, J.: Label aided deep ranking for the automatic diagnosis of parkinsonian syndromes. Neurocomputing 330, 162–171 (2019). https://doi.org/10.1016/j.neucom.2018.10.074

    CrossRef  Google Scholar 

  25. Ortiz, A., et al.: Parkinson’s disease detection using isosurfaces-based features and convolutional neural networks. Front. Neuroinform. 13, 48 (2019). https://doi.org/10.3389/fninf.2019.00048

  26. Segovia, F., Górriz, J.M., Ramírez, J., Martínez-Murcia, F.J., Castillo-Barnes, D.: Assisted diagnosis of parkinsonism based on the striatal morphology. Int. J. Neural Syst. 29(09), 1950011 (2019). https://doi.org/10.1142/S0129065719500114

    CrossRef  PubMed  Google Scholar 

  27. Wellcome Centre for Human Neuroimaging: Statistical Parametrical Mapping (2018). https://www.fil.ion.ucl.ac.uk/spm/software/spm12

Download references

Acknowledgments

This work was supported by projects PGC2018-098813-B-C32 and RTI2018-098913-B100 (Spanish “Ministerio de Ciencia, Innovación y Universidades”), UMA20-FEDERJA-086, CV20-45250, A-TIC-080-UGR18 and P20 00525 (Consejería de economía y conocimiento, Junta de Andalucía) and by European Regional Development Funds (ERDF); and by Spanish “Ministerio de Universidades” through Margarita-Salas grant to J.E. Arco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan E. Arco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Arco, J.E., Ortiz, A., Castillo-Barnes, D., Górriz, J.M., Ramírez, J. (2022). Quantifying Inter-hemispheric Differences in Parkinson’s Disease Using Siamese Networks. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications. IWINAC 2022. Lecture Notes in Computer Science, vol 13258. Springer, Cham. https://doi.org/10.1007/978-3-031-06242-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06242-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06241-4

  • Online ISBN: 978-3-031-06242-1

  • eBook Packages: Computer ScienceComputer Science (R0)