Skip to main content

Modelling the Progression of the Symptoms of Parkinsons Disease Using a Nonlinear Decomposition of 123I FP-CIT SPECT Images

  • 355 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13258)

Abstract

Parkinson’s Disease (PD) is one of the most relevant neurodegenerative disorder. It is mainly caused by a loss of dopamine neurons leading to a reduction in the neurotransmitter dopamine, which is essential in the control of movement. While the diagnosis of PD is mainly clinical, new markers are being used with high accuracy in the later stages of the disease, where symptoms are clear. However, the early stages of the disease, when symptoms start to evolve and treatments could potentially be more effective, are yet to be explored. In this work we explore the low-dimensional latent space of the Parkinson’s Progression Markers Initiative (PPMI) DaTSCAN imaging dataset, with a twofold objective: to perform an early diagnosis of PD, and to link the low-dimensional representation of the images to symptomatology. Different unsupervised methods have been used to extract the features (ISOMAP and PCA), and the resulting space is evaluated by means of binary or multiclass classification, and linear regression, using Support Vector Machines (SVM). We obtained a diagnosis of PD with an Area Under the ROC Curve (AUC) above 0.94 for three different variables, and a relevant link between the Unified Parkinson’s Disease Rating Scale (UPDRS) and the imaging composite features with \(R^2>0.2\) even for a simple linear model. These results pave the way to explore latent representations in PD and study the progression of the disease and its symptomatology.

Keywords

  • Parkinson Disease (PD)
  • ISOMAP
  • Principal Component Analysis (PCA)
  • Support Vector Machine (SVM)
  • ROC Curve

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-06242-1_11
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-06242-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Artan, Y., et al.: Prostate cancer localization with multispectral MRI using cost-sensitive support vector machines and conditional random fields. IEEE Trans. Image Process. 19(9), 2444–2455 (2010)

    CrossRef  Google Scholar 

  2. Castillo-Barnes, D., Martínez-Murcia, F.J., Ramírez, J., Górriz, J., Salas-Gonzalez, D.: Expectation-maximization algorithm for finite mixture of \(\alpha \)-stable distributions. Neurocomputing 413, 210–216 (2020)

    CrossRef  Google Scholar 

  3. Cayton, L.: Algorithms for manifold learning. Univ. of California at San Diego Technical report 12(1–17), 1 (2005)

    Google Scholar 

  4. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

    Google Scholar 

  5. Górriz, J.M., et al.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing 410, 237–270 (2020). https://doi.org/10.1016/j.neucom.2020.05.078

    CrossRef  Google Scholar 

  6. Illán, I., Górriz, J., Ramírez, J., Segovia, F., Jiménez-Hoyuela, J., Ortega Lozano, S.: Automatic assistance to Parkinson’s disease diagnosis in datscan spect imaging. Med. Phys. 39(10), 5971–5980 (2012)

    CrossRef  Google Scholar 

  7. Kubota, K.J., Chen, J.A., Little, M.A.: Machine learning for large-scale wearable sensor data in Parkinson’s disease: Concepts, promises, pitfalls, and futures. Mov. Disord. 31(9), 1314–1326 (2016)

    CrossRef  Google Scholar 

  8. Martinez-Murcia, F.J., Ortiz, A., Gorriz, J.M., Ramirez, J., Castillo-Barnes, D.: Studying the manifold structure of Alzheimer’s disease: a deep learning approach using convolutional autoencoders. IEEE J. Biomed. Health Inform. 24(1), 17–26 (2019)

    CrossRef  Google Scholar 

  9. Murcia, F.J.M.: Statistical neuroimage modeling, processing and synthesis based on texture and component analysis: tackling the small sample size problem. Ph.D. thesis, Universidad de Granada (2017)

    Google Scholar 

  10. Pahwa, R., Lyons, K.E.: Early diagnosis of Parkinson’s disease: recommendations from diagnostic clinical guidelines. Am. J. Manag. Care 16(4), 94–99 (2010)

    Google Scholar 

  11. Rojas, A., et al.: Application of empirical mode decomposition (EMD) on datscan spect images to explore Parkinson disease. Expert Syst. Appl. 40(7), 2756–2766 (2013). https://doi.org/10.1016/j.eswa.2012.11.017, https://www.sciencedirect.com/science/article/pii/S0957417412012274

  12. Sakar, B.E., et al.: Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J. Biomed. Health Inform. 17(4), 828–834 (2013)

    CrossRef  Google Scholar 

  13. Stoeckel, J., Fung, G.: Svm feature selection for classification of spect images of alzheimer’s disease using spatial information. In: Fifth IEEE International Conference on Data Mining (ICDM 2005). IEEE (2005). 8-pp

    Google Scholar 

  14. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    CAS  CrossRef  Google Scholar 

  15. Vos, T., et al.: Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the global burden of disease study 2015. The lancet 388(10053), 1545–1602 (2016)

    CrossRef  Google Scholar 

  16. Zhan, A., et al.: Using smartphones and machine learning to quantify Parkinson disease severity: the mobile Parkinson disease score. JAMA Neurol. 75(7), 876–880 (2018)

    CrossRef  Google Scholar 

  17. Zubal, I.G., Early, M., Yuan, O., Jennings, D., Marek, K., Seibyl, J.P.: Optimized, automated striatal uptake analysis applied to spect brain scans of Parkinson’s disease patients. J. Nucl. Med. 48(6), 857–864 (2007)

    CrossRef  Google Scholar 

Download references

Acknowledgements

This work was supported by the MCIN/ AEI/10.13039/501100011033/ and FEDER “Una manera de hacer Europa” under the RTI2018-098913-B100 project, by the Consejería de Economía, Innovacióon, Ciencia y Empleo (Junta de Andalucía) and FEDER under CV20-45250, A-TIC-080-UGR18, B-TIC-586-UGR20 and P20-00525 projects. Work by F.J.M.M. is supported by the MCIN AEI IJC2019-038835-I ‘Juan de la Cierva - Incorporacion’ fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Jesús Martinez-Murcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Simón-Rodríguez, J.A., Martinez-Murcia, F.J., Ramírez, J., Castillo-Barnes, D., Gorriz, J.M. (2022). Modelling the Progression of the Symptoms of Parkinsons Disease Using a Nonlinear Decomposition of 123I FP-CIT SPECT Images. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications. IWINAC 2022. Lecture Notes in Computer Science, vol 13258. Springer, Cham. https://doi.org/10.1007/978-3-031-06242-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06242-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06241-4

  • Online ISBN: 978-3-031-06242-1

  • eBook Packages: Computer ScienceComputer Science (R0)