Skip to main content

Identification and Validation of Brass Material Parameters Using Single Point Incremental Forming

  • Conference paper
  • First Online:
NUMISHEET 2022

Abstract

The identification of material parameters of a brass alloy using single point incremental forming (SPIF) is presented. The determination of accurate law parameters for metal sheets in the whole range of their plastic deformation field is a challenge in order to reach efficient forming simulations of manufacturing processes. The identification is performed using a homemade optimization code based on Levenberg–Marquardt algorithm. To validate the previously identified material data, an identifiability method is developed. This method consists in measuring the influence of a material parameter on the SPIF test by analyzing the sensitivity matrix. Such information permits to assess the capacity of a SPIF test to be used to identify the material parameters. A consisting scalar (the identifiability index), concluded from the highest and the lowest eigenvalues of the Fisher’s matrix, gives an indication about the most appropriate SPIF tests to identify the material data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. La Fontaine A, Keast VJ (2006) Compositional distributions in classical and lead-free brasses. Mater Charact 57:424–429

    Article  Google Scholar 

  2. Alaboodi AS, Al-Mufadi F, Modeling BP (2018) Cold deformation of dezincification resistant yellow brass for plumbing Cold deformation of dezincification resistant yellow brass for plumbing applications. Mater Manuf Process 33(15):1693–1700

    Article  Google Scholar 

  3. Skibicki D, Pejkowski Ł (2017) Low-cycle multiaxial fatigue behaviour and fatigue life prediction for CuZn37 brass using the stress-strain models. Int J Fatigue 102:18–36

    Article  CAS  Google Scholar 

  4. Echrif SBM, Hrairi M (2011) Research and progress in incremental sheet forming processes. Mater Manuf Process 26(11):1404–1414

    Article  CAS  Google Scholar 

  5. Brun R, Reichert P, Künsch HR (2001) Practical identifiability analysis of large environmental simulation models. Water Resour Res 37(4):1015–1030

    Article  Google Scholar 

  6. Richard F, Villars M, Thibaud S (2013) Viscoelastic modeling and quantitative experimental characterization of normal and osteoarthritic human articular cartilage using indentation. J Mech Behav Biomed Mater 24:41–52

    Article  CAS  Google Scholar 

  7. Henrard C, Bouffioux C, Eyckens P, Sol H, Duflou JR, Van Houtte P, Van Bael A, Duchêne L, Habraken AM (2011) Forming forces in single point incremental forming: prediction by finite element simulations, validation and sensitivity. Comput Mech 47:573–590

    Google Scholar 

  8. Reichert P, Vanrolleghem P (2001) Identifiability and uncertainty analysis of the river water quality model no. 1 (RWQM1). Water Sci Technol 43(7):329–338

    Article  CAS  Google Scholar 

  9. Ben Hmida R (2014) Identification de lois de comportement de tôles en faibles épaisseurs par développement et utilisation du procédé de microformage incremental. PhD Thesis, Supervisor: S.Thibaud, University of Franche-Comté

    Google Scholar 

  10. Gujarati D (2004) Basic econometrics

    Google Scholar 

  11. Guzmán CF, Yuan S, Duchêne L, Saavedra Flores EI, Habraken AM (2018) Damage prediction in single point incremental forming using an extended Gurson model. Int J Solids Struct 151:45–56

    Google Scholar 

  12. Bouffioux C, Henrard C, Eyckens P, Aerens R, Van Bael A, Sol H, Duflou JR, Habraken AM (2008) Comparison of the tests chosen for material parameter identification to predict single point incremental forming forces. In: Proceedings IDDRG 2008 International conference, Olofström, Sweden, pp 133–144

    Google Scholar 

  13. Ben Bettaieb A, Velosa de Sena JI, Alves de Sousa R, Valente R, Habraken AM, Duchêne L (2015) On the comparison of two solid-shell formulations based on in-plane reduced and full integration schemes in linear and non-linear applications. Finite Elem Anal Des 107:44–59

    Google Scholar 

  14. Habraken AM, Cescotto S, Banning Q (1998) Contact between deformable solids: the fully coupled approach. Math Comput Model 28(4):153–169

    Article  Google Scholar 

Download references

Acknowledgements

FNRS Research Director A.M. Habraken acknowledges the support from Belgian Fund for Scientific Research (FRS-FNRS). This SPIF research is funded by the PDR MatSPIF-ID FRS-FNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehssen Betaieb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Betaieb, E., Duchêne, L., Marie Habraken, A. (2022). Identification and Validation of Brass Material Parameters Using Single Point Incremental Forming. In: Inal, K., Levesque, J., Worswick, M., Butcher, C. (eds) NUMISHEET 2022. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-06212-4_79

Download citation

Publish with us

Policies and ethics